ARAB CLIMATE CHANGE ASSESSMENT REPORT

TECHNICAL ANNEX

Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region
ARAB CLIMATE CHANGE ASSESSMENT REPORT

TECHNICAL ANNEX

Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region

RICCAR PARTNERS

DONORS
PREFACE

The Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) is a joint initiative of the United Nations and the League of Arab States launched in 2010.

RICCAR is implemented through a collaborative partnership involving 11 regional and specialized organizations, namely United Nations Economic and Social Commission for Western Asia (ESCWA), the Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD), Food and Agriculture Organization of the United Nations (FAO), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), the League of Arab States, Swedish Meteorological and Hydrological Institute (SMHI), United Nations Environment Programme (UN Environment), United Nations Educational, Scientific and Cultural Organization (UNESCO) Office in Cairo, United Nations Office for Disaster Risk Reduction (UNISDR), United Nations University Institute for Water, Environment and Health (UNU-INWEH), and World Meteorological Organization (WMO). ESCWA coordinates the regional initiative. Funding for RICCAR is provided by the Government of Sweden and the Government of the Federal Republic of Germany.

RICCAR is implemented under the auspices of the Arab Ministerial Water Council and derives its mandate from resolutions adopted by this council as well as the Council of Arab Ministers Responsible for the Environment, the Arab Permanent Committee for Meteorology and the 25th ESCWA Ministerial Session.

Funding for the preparation of this technical annex was provided by the Swedish Government through the Swedish International Development Cooperation Agency.

CONTENTS

PART I

IMPACT ASSESSMENT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regional Climate Modelling: Arab Domain</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Regional Hydrological Modelling: Arab Region</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>Moroccan Highlands</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Mediterranean Coast</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Nile River: Blue Nile Headwaters</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Tigris River: Upper Tigris</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>Euphrates River: Upper Euphrates</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>Medjerda River</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>Jordan River</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>Senegal River: Senegal Headwaters</td>
<td>105</td>
</tr>
</tbody>
</table>

PART II

INTEGRATED VULNERABILITY ASSESSMENT

Chapter	Title	Page
---------		------
11	Water Sector	127
12	Biodiversity and Ecosystems Sector	141
13	Agriculture Sector	171
14	Infrastructure and Human Settlements Sector	201
15	People Sector	215
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs.diff</td>
<td>absolute difference</td>
</tr>
<tr>
<td>Apr-Sept</td>
<td>April–September</td>
</tr>
<tr>
<td>CDD</td>
<td>maximum length of dry spell</td>
</tr>
<tr>
<td>CNRM-CM5</td>
<td>Centre National de Recherches Météorologiques-Climate Model 5</td>
</tr>
<tr>
<td>CWD</td>
<td>maximum length of wet spell</td>
</tr>
<tr>
<td>EC-EARTH</td>
<td>ECMWF-based Earth-system model</td>
</tr>
<tr>
<td>ESCWA</td>
<td>United Nations Economic and Social Commission for Western Asia</td>
</tr>
<tr>
<td>GCM</td>
<td>Global Climate Model or General Circulation Model</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GFDL-ESM2M</td>
<td>Geophysical Fluid Dynamics Laboratory- Earth System Model 2</td>
</tr>
<tr>
<td>HYPE</td>
<td>Hydrological Predictions for the Environment (hydrological model)</td>
</tr>
<tr>
<td>km</td>
<td>kilometres</td>
</tr>
<tr>
<td>mm</td>
<td>millimetres</td>
</tr>
<tr>
<td>MNA22</td>
<td>25 km resolution (MENA domain 0.22 degrees)</td>
</tr>
<tr>
<td>MNA44</td>
<td>50 km resolution (MENA domain 0.44 degrees)</td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>Oct-Mar</td>
<td>October–March</td>
</tr>
<tr>
<td>ODA</td>
<td>official development assistance</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Climate Model</td>
</tr>
<tr>
<td>RCP</td>
<td>representative concentration pathway</td>
</tr>
<tr>
<td>RHM</td>
<td>Regional Hydrological Model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICCAR</td>
<td>Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region</td>
</tr>
<tr>
<td>R10</td>
<td>Annual count of 10 mm precipitation days</td>
</tr>
<tr>
<td>R20</td>
<td>Annual count of 20 mm precipitation days</td>
</tr>
<tr>
<td>SU</td>
<td>number of summer days</td>
</tr>
<tr>
<td>SU35</td>
<td>number of hot days</td>
</tr>
<tr>
<td>SU40</td>
<td>number of very hot days</td>
</tr>
<tr>
<td>TR</td>
<td>tropical nights</td>
</tr>
<tr>
<td>VA</td>
<td>vulnerability assessment</td>
</tr>
<tr>
<td>VIC</td>
<td>Variable Infiltration Capacity (hydrological model)</td>
</tr>
<tr>
<td>ºC</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>%</td>
<td>per cent</td>
</tr>
<tr>
<td>&</td>
<td>and</td>
</tr>
</tbody>
</table>
PART I

IMPACT ASSESSMENT
CONTENTS

Impact Assessment
- Explanatory Note 21

CHAPTER 1
REGIONAL CLIMATE MODELLING: ARAB DOMAIN 23
- 1.1 General Parameters 25
 - 1.1.1 Temperature 25
 - 1.1.2 Precipitation 26
- 1.2 Extreme Events 30
 - 1.2.1 Changes in extreme temperature 30
 - 1.2.2 Changes in extreme precipitation 34

CHAPTER 2
REGIONAL HYDROLOGICAL MODELLING: ARAB REGION 39
- 2.1 Hydrological Parameters 40
 - 2.1.1 Runoff 40
 - 2.1.2 Evapotranspiration 48

CHAPTER 3
MOROCCAN HIGHLANDS 53
- 3.1 General Parameters 54
 - 3.1.1 Temperature 54
 - 3.1.2 Precipitation 55
- 3.2 Extreme Events 56
 - 3.2.1 Changes in extreme temperature 56
 - 3.2.2 Changes in extreme precipitation 56
- 3.3 Hydrological Parameters 57
 - 3.3.1 Runoff 57
 - 3.3.2 Evapotranspiration 57
 - 3.3.3 Comparison 50 km vs 25 km resolutions Runoff 58

CHAPTER 4
MEDITERRANEAN COAST 59
- 4.1 General Parameters 60
 - 4.1.1 Temperature 60
 - 4.1.2 Precipitation 61
- 4.2 Extreme Events 62
 - 4.2.1 Changes in extreme temperature 62
 - 4.2.2 Changes in extreme precipitation 62
- 4.3 Hydrological Parameters 63
 - 4.3.1 Runoff 63
 - 4.3.2 Evapotranspiration 63
 - 4.3.3 Comparison 50 km vs 25 km resolutions Runoff 64

CHAPTER 5
NILE RIVER: BLUE NILE HEADWATERS 65
- 5.1 General Parameters 66
 - 5.1.1 Temperature 66
 - 5.1.2 Precipitation 67
- 5.2 Extreme Events 68
 - 5.2.1 Changes in extreme temperature 68
 - 5.2.2 Changes in extreme precipitation 68
- 5.3 Hydrological Parameters 69
 - 5.3.1 Runoff 69
 - 5.3.2 Discharge 70
 - 5.3.3 Evapotranspiration 70
 - 5.3.4 Comparison 50 km vs 25 km resolutions Runoff 71
 - 5.3.4.1 Runoff 71
 - 5.3.4.2 Discharge 72

CHAPTER 6
TIGRIS RIVER: UPPER TIGRIS 73
- 6.1 General Parameters 74
 - 6.1.1 Temperature 74
 - 6.1.2 Precipitation 75
- 6.2 Extreme Events 76
 - 6.2.1 Changes in extreme temperature 76
 - 6.2.2 Changes in extreme precipitation 76
- 6.3 Hydrological Parameters 77
 - 6.3.1 Runoff 77
 - 6.3.2 Discharge 78
 - 6.3.3 Evapotranspiration 78
 - 6.3.4 Comparison 50 km vs 25 km resolutions Runoff 79
 - 6.3.4.1 Runoff 79
 - 6.3.4.2 Discharge 80

CHAPTER 7
EUPHRATES RIVER: UPPER EUPHRATES 81
- 7.1 General Parameters 82
 - 7.1.1 Temperature 82
 - 7.1.2 Precipitation 83
- 7.2 Extreme Events 84
 - 7.2.1 Changes in extreme temperature 84
 - 7.2.2 Changes in extreme precipitation 84
- 7.3 Hydrological Parameters 85
 - 7.3.1 Runoff 85
 - 7.3.2 Discharge 86
 - 7.3.3 Evapotranspiration 86
 - 7.3.4 Comparison 50 km vs 25 km resolutions 87
 - 7.3.4.1 Runoff 87
 - 7.3.4.2 Discharge 88
CHAPTER 8
MEDJERDA RIVER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 General Parameters</td>
<td>90</td>
</tr>
<tr>
<td>8.1.1 Temperature</td>
<td>90</td>
</tr>
<tr>
<td>8.1.2 Precipitation</td>
<td>91</td>
</tr>
<tr>
<td>8.2 Extreme Events</td>
<td>92</td>
</tr>
<tr>
<td>8.2.1 Changes in extreme temperature</td>
<td>92</td>
</tr>
<tr>
<td>8.2.2 Changes in extreme precipitation</td>
<td>92</td>
</tr>
<tr>
<td>8.3 Hydrological Parameters</td>
<td>93</td>
</tr>
<tr>
<td>8.3.1 Runoff</td>
<td>93</td>
</tr>
<tr>
<td>8.3.2 Discharge</td>
<td>94</td>
</tr>
<tr>
<td>8.3.3 Evapotranspiration</td>
<td>94</td>
</tr>
<tr>
<td>8.3.4 Comparison 50 km vs 25 km resolutions</td>
<td>95</td>
</tr>
<tr>
<td>8.3.4.1 Runoff</td>
<td>95</td>
</tr>
<tr>
<td>8.3.4.2 Discharge</td>
<td>96</td>
</tr>
</tbody>
</table>

CHAPTER 9
JORDAN RIVER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 General Parameters</td>
<td>98</td>
</tr>
<tr>
<td>9.1.1 Temperature</td>
<td>98</td>
</tr>
<tr>
<td>9.1.2 Precipitation</td>
<td>99</td>
</tr>
<tr>
<td>9.2 Extreme Events</td>
<td>100</td>
</tr>
<tr>
<td>9.2.1 Changes in extreme temperature</td>
<td>100</td>
</tr>
<tr>
<td>9.2.2 Changes in extreme precipitation</td>
<td>100</td>
</tr>
<tr>
<td>9.3 Hydrological Parameters</td>
<td>101</td>
</tr>
<tr>
<td>9.3.1 Runoff</td>
<td>101</td>
</tr>
<tr>
<td>9.3.2 Discharge</td>
<td>102</td>
</tr>
<tr>
<td>9.3.3 Evapotranspiration</td>
<td>102</td>
</tr>
<tr>
<td>9.3.4 Comparison 50 km vs 25 km resolutions</td>
<td>103</td>
</tr>
<tr>
<td>9.3.4.1 Runoff</td>
<td>103</td>
</tr>
<tr>
<td>9.3.4.2 Discharge</td>
<td>104</td>
</tr>
</tbody>
</table>

CHAPTER 10
SENEGAL RIVER: SENEGAL HEADWATERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 General Parameters</td>
<td>106</td>
</tr>
<tr>
<td>10.1.1 Temperature</td>
<td>106</td>
</tr>
<tr>
<td>10.1.2 Precipitation</td>
<td>107</td>
</tr>
<tr>
<td>10.2 Extreme Events</td>
<td>108</td>
</tr>
<tr>
<td>10.2.1 Changes in extreme temperature</td>
<td>108</td>
</tr>
<tr>
<td>10.2.2 Changes in extreme precipitation</td>
<td>108</td>
</tr>
<tr>
<td>10.3 Hydrological Parameters</td>
<td>109</td>
</tr>
<tr>
<td>10.3.1 Runoff</td>
<td>109</td>
</tr>
<tr>
<td>10.3.2 Discharge</td>
<td>110</td>
</tr>
<tr>
<td>10.3.3 Evapotranspiration</td>
<td>110</td>
</tr>
<tr>
<td>10.3.4 Comparison 50 km vs 25 km resolutions</td>
<td>111</td>
</tr>
<tr>
<td>10.3.4.1 Runoff</td>
<td>111</td>
</tr>
<tr>
<td>10.3.4.2 Discharge</td>
<td>112</td>
</tr>
</tbody>
</table>
CHAPTER 1
REGIONAL CLIMATE MODELLING: ARAB DOMAIN

FIGURE 1
Mean change in annual temperature for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 2
Mean change in annual precipitation for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 3
Agreement on mean change in annual precipitation from the reference period between the ensemble of three RCP 4.5 and RCP 8.5 projections for mid-century and end-century

FIGURE 4
Mean change in seasonal precipitation for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period (April-September)

FIGURE 5
Mean change in seasonal precipitation for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period (October-March)

FIGURE 6
Agreement on mean change in seasonal precipitation from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century

FIGURE 7
Agreement on mean change in seasonal precipitation from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century

FIGURE 8
Mean change in SU for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 9
Mean change in SU for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 10
Mean change in SU for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 11
Mean change in TR for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 12
Mean change in CDD for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 13
Mean change in CWD for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 14
Mean change in R10 for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 15
Mean change in R20 for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 16
Mean change in annual runoff for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period using two hydrological models

FIGURE 17
Mean change in annual runoff for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

FIGURE 18
Agreement on mean change in seasonal runoff (April-September) from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models

FIGURE 19
Agreement on mean change in seasonal runoff (October-March) from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models

FIGURE 20
Mean change in seasonal runoff (April-September) for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models

FIGURE 21
Mean change in seasonal runoff (October-March) for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models

FIGURE 22
Mean change in annual runoff for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

FIGURE 23
Mean change in annual runoff for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

FIGURE 24
Agreement on mean change in seasonal runoff (April-September) from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models

FIGURE 25
Agreement on mean change in seasonal runoff (October-March) from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models

FIGURE 26
Agreement on mean change in seasonal runoff (April-September) from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models
CHAPTER 3
MOROCCAN HIGHLANDS

FIGURE 27
Agreement on mean change in seasonal runoff (October-March) from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models

FIGURE 28
Mean change in annual evapotranspiration for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models

FIGURE 29
Mean change in annual evapotranspiration for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

FIGURE 30
Agreement on mean change in annual evapotranspiration from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models

FIGURE 31
Agreement on mean change in annual evapotranspiration from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models

FIGURE 32
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 33
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 34
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 35
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 36
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 37
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 38
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 39
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 40
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 41
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 42
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 43
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 44
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 45
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 46
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 47
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 48
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 49
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 50
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 51
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 52
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 53
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 54
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 55
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 56
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 57
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 58
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 59
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 60
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 61
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 62
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 63
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 64
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 65
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 66
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 67
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 68
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 69
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 70
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 71
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 72
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model

FIGURE 73
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 74
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 75
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 76
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 77
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model
FIGURE 54
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 55
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model

CHAPTER 4
MEDITERRANEAN COAST

FIGURE 56
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 57
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 58
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 59
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 60
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 61
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 62
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 63
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

CHAPTER 5
NILE RIVER: BLUE NILE HEADWATERS

FIGURE 64
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 65
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 66
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 67
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 68
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 69
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 70
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 71
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 72
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 73
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 74
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 75
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 76
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 77
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model

FIGURE 78
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 79
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model
FIGURE 108
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model

CHAPTER 6
TIGRIS RIVER: UPPER TIGRIS

FIGURE 110
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 111
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 112
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 113
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 114
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 115
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 116
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 117
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 118
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 119
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 120
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 121
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 122
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 123
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 124
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 125
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 126
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 127
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 128
Mean change in annual runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 129
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 130
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 131
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 132
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 133
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 134
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model
FIGURE 135
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 141
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 148
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 155
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 136
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model

FIGURE 142
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 149
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 156
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 137
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model

FIGURE 143
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 150
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 157
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 138
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 144
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 151
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 158
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 139
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model

FIGURE 145
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 152
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 159
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 146
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 153
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 160
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 147
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 154
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 161
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

CHAPTER 7
EUPHRATES RIVER: UPPER EUPHRATES

FIGURE 140
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 147
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 154
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 161
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model
PART I. IMPACT ASSESSMENT

FIGURE 162
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 163
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 164
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model

FIGURE 165
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 166
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model

FIGURE 167
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model

FIGURE 168
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 169
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model

CHAPTER 8
MEDJERDA RIVER

FIGURE 170
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 171
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 172
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 173
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 174
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 175
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 176
Mean change in seasonal precipitation (March-April) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 177
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 178
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 179
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 180
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 181
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 182
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 183
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 184
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 185
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 186
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 187
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 188
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 189
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 190
Mean change in seasonal precipitation (March-April) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 191
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 192
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 193
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 194
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 195
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 196
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 197
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 198
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
CHAPTER 9
JORDAN RIVER
FIGURE 216
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 217
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 218
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 219
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 220
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 221
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 222
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 223
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 224
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model

FIGURE 225
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 226
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model

FIGURE 227
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model

FIGURE 228
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 229
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model

FIGURE 230
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 231
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 232
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 233
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 234
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 235
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 236
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 237
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 238
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 239
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 240
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 241
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 242
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

CHAPTER 10
SENEGAL RIVER: SENEGAL HEADWATERS
FIGURE 243
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 244
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 245
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 246
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 247
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 248
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 249
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 250
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 251
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 252
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 253
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 254
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model

FIGURE 255
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 256
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model

FIGURE 257
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model

FIGURE 258
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 259
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model
Impact Assessment
Explanatory Note

This note aims to provide clarifications on the figures pertaining to the impact assessment outputs presented in the following sections.

The available outputs from Regional Climate Modelling (RCM) are temperature, precipitation, and selected extreme events indices expressed in terms of change from the reference period. They were generated using RCA4 nested in three driving Global Climate Models (GCMs), namely EC-Earth, CNRM and GFDL-ESM combined as an ensemble for the RCP 4.5 and RCP 8.5 emission scenarios through the end of this century at a 50km scale. Results are presented as maps for the entire Arab Domain, and as plotted time series showing area means summarized over specified sub-domains, namely the Moroccan Highlands and the Mediterranean Coast, as well as sub-domains related to shared river basins.

Outputs pertaining to Regional Hydrological Modelling (RHM) using the VIC and/or HYPE hydrological models include runoff, evapotranspiration and mean discharge, and are based on bias corrected results for temperature and precipitation generated by the RCMs. These were modelled until the year 2100 considering RCP 4.5 and RCP 8.5 emission scenarios at a 50km resolution. Comparisons with results of 25km resolution are presented for changes in runoff and discharge for the RCP 8.5 projections, noting that at this resolution only two projections were available and were thus not combined as an ensemble. Analysis for them consisted primarily of comparisons against the respective 50km projections driven by the same Global Climate Model (EC-Earth, GFDL-ESM2M).

The different RCM and RHM outputs are presented for the Arab Domain (Figures 1 through 15); Arab Region (Figures 16 through 31) two selected subdomains (Figures 32 through 79) and for shared river basins (Figures 80 through 259).

All outputs from RCMs and RHMs are expressed in terms of changes from the reference period (1986-2005) and presented as projections for mid-century (2046-2065) and end-century (2081-2100). Results are also provided for two seasonal periods for selected parameters; namely April-September and October-March in order to assess how climate in the Arab region varies between seasons. The figures presented in this annex at the seasonal level are only indicative, noting that the full set of results at this temporal scale for the different parameters will be made available on the Regional Knowledge Hub, providing access to datasets which can be independently studied at more detailed temporal levels (e.g. inter-seasonal, monthly, etc.).

In addition, some figures on ensemble member agreements are presented in this annex for the Arab Domain or the Arab Region such as precipitation (Figures 3, 6 and 7), runoff (Figures 18-19 and 24 to 27) and evapotranspiration (Figures 30 and 31).

Finally, it is important to note that assumptions, further considerations and detailed observations specific to each parameter and output are mentioned in the main report, and it is therefore advised to refer to it consistently while reading through this annex.
CHAPTER 1

REGIONAL CLIMATE MODELLING: ARAB DOMAIN
FIGURE 1
Mean change in annual temperature for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

RCP 4.5

1986-2005
2046-2065
2081-2100

Temperature (°C)

RCP 8.5

1986-2005
2046-2065
2081-2100

Temperature (°C)
1.1. GENERAL PARAMETERS – 1.1.2. PRECIPITATION

FIGURE 2
Mean change in annual precipitation for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period (1986-2005).
1.1. GENERAL PARAMETERS – 1.1.2. PRECIPITATION

FIGURE 3

Agreement on mean change in annual precipitation from the reference period between the ensemble of three RCP 4.5 and RCP 8.5 projections for mid-century and end-century

Note: Brown indicates where all ensemble projections agree on a decrease in precipitation, dark blue indicates where 2 out of 3 projections show an increase and light blue indicates where 2 out of 3 projections show a decrease and light blue indicates where 2 out of 3 projections show an increase.
1.1. GENERAL PARAMETERS – 1.1.2. PRECIPITATION

FIGURE 4
Mean change in seasonal precipitation for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period

FIGURE 5
Mean change in seasonal precipitation for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period
1.1. GENERAL PARAMETERS – 1.1.2. PRECIPITATION

FIGURE 6
Agreement on mean change in seasonal precipitation from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century

RCP 4.5

<table>
<thead>
<tr>
<th>2046-2065</th>
<th>2081-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR-SEP</td>
<td>APR-SEP</td>
</tr>
<tr>
<td>OCT-MAR</td>
<td>OCT-MAR</td>
</tr>
</tbody>
</table>

FIGURE 7
Agreement on mean change in seasonal precipitation from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century

RCP 8.5

<table>
<thead>
<tr>
<th>2046-2065</th>
<th>2081-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR-SEP</td>
<td>APR-SEP</td>
</tr>
<tr>
<td>OCT-MAR</td>
<td>OCT-MAR</td>
</tr>
</tbody>
</table>

Note: Brown indicates where all ensemble projections agree on a decrease in precipitation, dark blue indicates where all agree on an increase in precipitation, white indicates where 2 out of 3 projections show a decrease and light blue indicates where 2 out of 3 projections show an increase.
1.2. EXTREME EVENTS – 1.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 8
Mean change in SU for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period (1986-2005).
1.2. EXTREME EVENTS – 1.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 9: Mean change in SU35 for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period.
1.2. EXTREME EVENTS – 1.2.1. CHANGES IN EXTREME TEMPERATURE

Mean change in SU40 for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period.
1.2. EXTREME EVENTS – 1.2.1. CHANGES IN EXTREME TEMPERATURE

Mean change in TR for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period.

FIGURE 11

Mean change in TR for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period.
FIGURE 12
Mean change in CDD for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period.
FIGURE 13
Mean change in CWD for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

RCP 4.5

<table>
<thead>
<tr>
<th>Number of days/year</th>
<th>1986-2005</th>
<th>2046-2065</th>
<th>2081-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCP 8.5

<table>
<thead>
<tr>
<th>Number of days/year</th>
<th>1986-2005</th>
<th>2046-2065</th>
<th>2081-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2. EXTREME EVENTS – 1.2.2. CHANGES IN EXTREME PRECIPITATION

FIGURE 14
Mean change in R10 for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period.
FIGURE 15
Mean change in R20 for mid-century and end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

RCP 4.5

Number of days/year

1986-2005

2046-2065

2081-2100

RCP 8.5

Number of days/year

1986-2005

2046-2065

2081-2100
CHAPTER 2

REGIONAL HYDROLOGICAL MODELLING: ARAB REGION
2.1. HYDROLOGICAL PARAMETERS – 2.1.1. RUNOFF

Mean change in annual runoff for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models.
FIGURE 17
Mean change in annual runoff for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

2.1. HYDROLOGICAL PARAMETERS – 2.1.1. RUNOFF

RCP 8.5

HYPE MODEL

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Local Runoff (mm/month)</th>
<th>Local Runoff, abs.diff. (mm/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986-2005</td>
<td>< 0.1</td>
<td>0.1 - 1</td>
</tr>
<tr>
<td></td>
<td>1 - 2</td>
<td>2 - 5</td>
</tr>
<tr>
<td></td>
<td>5 - 10</td>
<td>10 - 15</td>
</tr>
<tr>
<td></td>
<td>15 - 25</td>
<td>25 - 50</td>
</tr>
<tr>
<td></td>
<td>50 - 100</td>
<td>100 - 150</td>
</tr>
<tr>
<td>2046-2065</td>
<td>> 16</td>
<td>> 16</td>
</tr>
<tr>
<td></td>
<td>16 - 25</td>
<td>25 - 50</td>
</tr>
<tr>
<td></td>
<td>50 - 100</td>
<td>100 - 150</td>
</tr>
<tr>
<td>2081-2100</td>
<td>> 16</td>
<td>> 16</td>
</tr>
<tr>
<td></td>
<td>16 - 25</td>
<td>25 - 50</td>
</tr>
<tr>
<td></td>
<td>50 - 100</td>
<td>100 - 150</td>
</tr>
</tbody>
</table>

VIC MODEL

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Local Runoff (mm/month)</th>
<th>Local Runoff, abs.diff. (mm/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986-2005</td>
<td>< 0.1</td>
<td>0.1 - 1</td>
</tr>
<tr>
<td></td>
<td>1 - 2</td>
<td>2 - 5</td>
</tr>
<tr>
<td></td>
<td>5 - 10</td>
<td>10 - 15</td>
</tr>
<tr>
<td></td>
<td>15 - 25</td>
<td>25 - 50</td>
</tr>
<tr>
<td></td>
<td>50 - 100</td>
<td>100 - 150</td>
</tr>
<tr>
<td>2046-2065</td>
<td>> 16</td>
<td>> 16</td>
</tr>
<tr>
<td></td>
<td>16 - 25</td>
<td>25 - 50</td>
</tr>
<tr>
<td></td>
<td>50 - 100</td>
<td>100 - 150</td>
</tr>
<tr>
<td>2081-2100</td>
<td>> 16</td>
<td>> 16</td>
</tr>
<tr>
<td></td>
<td>16 - 25</td>
<td>25 - 50</td>
</tr>
<tr>
<td></td>
<td>50 - 100</td>
<td>100 - 150</td>
</tr>
</tbody>
</table>
FIGURE 18
Agreement on mean change in annual runoff from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models.

Note: Brown indicates where all ensemble projections agree on a decrease (-) in runoff, and green indicates where all agree on an increase (+) in runoff.
FIGURE 19
Agreement on mean change in annual runoff from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models.

RCP 8.5

HYPE MODEL

2046-2065

2081-2100

VIC MODEL

Local runoff, member agreement

- ALL -

+ ALL +

Note: Brown indicates where all ensemble projections agree on a decrease (−) in runoff, and green indicates where all agree on an increase (+) in runoff.
2.1. HYDROLOGICAL PARAMETERS – 2.1.1. RUNOFF

FIGURE 20
Mean change in seasonal runoff (April-September) for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models.

FIGURE 21
Mean change in seasonal runoff (October-March) for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models.
2.1. HYDROLOGICAL PARAMETERS – 2.1.1. RUNOFF

FIGURE 22
Mean change in seasonal runoff (April-September) for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

RCP 8.5 APRIL - SEPTEMBER

HYPE MODEL

1986-2005

2046-2065

2081-2100

VIC MODEL

FIGURE 23
Mean change in seasonal runoff (October-March) for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models

RCP 8.5 OCTOBER - MARCH

HYPE MODEL

1986-2005

2046-2065

2081-2100

VIC MODEL
2.1. HYDROLOGICAL PARAMETERS – 2.1.1. RUNOFF

FIGURE 24
Agreement on mean change in seasonal runoff (April-September) from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models.

RCP 4.5 APRIL - SEPTEMBER

HYPE MODEL

2046-2065

2081-2100

VIC MODEL

FIGURE 25
Agreement on mean change in seasonal runoff (October-March) from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models.

RCP 4.5 OCTOBER - MARCH

HYPE MODEL

2046-2065

2081-2100

VIC MODEL

Note: Brown indicates where all ensemble projections agree on a decrease (-) in runoff, and green indicates where all agree on an increase (+) in runoff.
2.1. HYDROLOGICAL PARAMETERS – 2.1.1. RUNOFF

FIGURE 26
Agreement on mean change in seasonal runoff (April-September) from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models

<table>
<thead>
<tr>
<th>RCP 8.5</th>
<th>APRIL - SEPTEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYPE MODEL</td>
<td></td>
</tr>
<tr>
<td>2046-2065</td>
<td></td>
</tr>
<tr>
<td>2081-2100</td>
<td></td>
</tr>
<tr>
<td>VIC MODEL</td>
<td></td>
</tr>
<tr>
<td>2046-2065</td>
<td></td>
</tr>
<tr>
<td>2081-2100</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 27
Agreement on mean change in seasonal runoff (October-March) from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models

<table>
<thead>
<tr>
<th>RCP 8.5</th>
<th>OCTOBER - MARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYPE MODEL</td>
<td></td>
</tr>
<tr>
<td>2046-2065</td>
<td></td>
</tr>
<tr>
<td>2081-2100</td>
<td></td>
</tr>
<tr>
<td>VIC MODEL</td>
<td></td>
</tr>
<tr>
<td>2046-2065</td>
<td></td>
</tr>
<tr>
<td>2081-2100</td>
<td></td>
</tr>
</tbody>
</table>

Note: Brown indicates where all ensemble projections agree on a decrease (-) in runoff, and green indicates where all agree on an increase (+) in runoff.
FIGURE 28
Mean change in annual evapotranspiration for mid-century and end-century for ensemble of three RCP 4.5 projections compared to the reference period using two hydrological models

2.1. HYDROLOGICAL PARAMETERS –
2.1.2. EVAPOTRANSPIRATION

<table>
<thead>
<tr>
<th>RCP 4.5</th>
<th>HYPE MODEL</th>
<th>VIC MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046-2065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2081-2100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evapotranspiration [mm/month]
Evapotranspiration, abs.diff. [mm/month]
FIGURE 29
Mean change in annual evapotranspiration for mid-century and end-century for ensemble of three RCP 8.5 projections compared to the reference period using two hydrological models
FIGURE 30
Agreement on mean change in annual evapotranspiration from the reference period between the ensemble of three RCP 4.5 projections for mid-century and end-century using two hydrological models.

RCP 4.5

HYPE MODEL

2046-2065

2081-2100

VIC MODEL

Evapotranspiration, member agreement

ALL -

ALL +

Note: Brown indicates where all ensemble projections agree on a decrease (-) in evapotranspiration, and green indicates where all agree on an increase (+) in evapotranspiration.
Agreement on mean change in annual evapotranspiration from the reference period between the ensemble of three RCP 8.5 projections for mid-century and end-century using two hydrological models.

Note: Brown indicates where all ensemble projections agree on a decrease (-) in evapotranspiration, and green indicates where all agree on an increase (+) in evapotranspiration.
CHAPTER 3

MOROCCAN HIGHLANDS
3.1. GENERAL PARAMETERS – 3.1.1. TEMPERATURE

FIGURE 32
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 33
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 34
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 35
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 36
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
3.1. GENERAL PARAMETERS – 3.1.2. PRECIPITATION

FIGURE 37
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 38
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 39
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 40
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 41
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
3.2. EXTREME EVENTS – 3.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 42
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 43
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 44
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 45
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 46
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 47
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 48
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
3.3. HYDROLOGICAL PARAMETERS – 3.3.1. RUNOFF

FIGURE 49
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 50
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 51
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

3.3. HYDROLOGICAL PARAMETERS – 3.3.2. EVAPOTRANSPIRATION

FIGURE 52
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
3.3. HYDROLOGICAL PARAMETERS – 3.3.3. COMPARISON 50 KM VS 25 KM RESOLUTIONS - RUNOFF

FIGURE 53
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model

FIGURE 54
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model

FIGURE 55
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model
CHAPTER 4

MEDITERRANEAN COAST
4.1. GENERAL PARAMETERS – 4.1.1. TEMPERATURE

FIGURE 56
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 57
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 58
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 59
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 60
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
4.1. GENERAL PARAMETERS – 4.1.2. PRECIPITATION

FIGURE 61
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 62
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 63
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 64
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 65
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
4.2. EXTREME EVENTS – 4.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 66
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 68
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

4.2. EXTREME EVENTS – 4.2.2. CHANGES IN EXTREME PRECIPITATION

FIGURE 69
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 70
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 71
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 72
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
4.3. HYDROLOGICAL PARAMETERS – 4.3.1. RUNOFF

FIGURE 73
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 74
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 75
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

4.3. HYDROLOGICAL PARAMETERS – 4.3.2. EVAPOTRANSPIRATION

FIGURE 76
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
4.3. HYDROLOGICAL PARAMETERS – 4.3.3. COMPARISON 50 KM VS 25 KM RESOLUTIONS - RUNOFF

FIGURE 77
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 78
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 79
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
CHAPTER 5

NILE RIVER: BLUE NILE HEADWATERS
5.1. GENERAL PARAMETERS – 5.1.1. TEMPERATURE

FIGURE 80
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 81
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 82
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 83
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 84
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
5.1. GENERAL PARAMETERS – 5.1.2. PRECIPITATION

FIGURE 85
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 86
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 87
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 88
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 89
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
5.2. EXTREME EVENTS – 5.2.2. CHANGES IN EXTREME TEMPERATURE

FIGURE 90
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 91
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 92
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

5.2. EXTREME EVENTS – 5.2.3. CHANGES IN EXTREME PRECIPITATION

FIGURE 93
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 94
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 95
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 96
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
5.3. HYDROLOGICAL PARAMETERS – 5.3.1. RUNOFF

FIGURE 97
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 98
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 99
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
5.3. HYDROLOGICAL PARAMETERS – 5.3.2. DISCHARGE

FIGURE 100
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model.

FIGURE 101
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model.

FIGURE 102
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model.

5.3. HYDROLOGICAL PARAMETERS – 5.3.3. EVAPOTRANSPIRATION

FIGURE 103
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models.
5.3. HYDROLOGICAL PARAMETERS – 5.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 5.3.4.1. RUNOFF

FIGURE 104
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 105
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 106
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
5.3. HYDROLOGICAL PARAMETERS – 5.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 5.3.4.2. DISCHARGE

FIGURE 107
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model.

FIGURE 108
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 109
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model.
6.1. GENERAL PARAMETERS – 6.1.1. TEMPERATURE

FIGURE 110
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 111
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 112
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 113
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 114
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
6.1. GENERAL PARAMETERS – 6.1.2. PRECIPITATION

FIGURE 115
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 116
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 117
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 118
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 119
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
6.2. EXTREME EVENTS – 6.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 120
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 121
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 122
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 123
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 124
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 125
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 126
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
6.3. HYDROLOGICAL PARAMETERS – 6.3.1. RUNOFF

FIGURE 127
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 128
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 129
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
6.3. HYDROLOGICAL PARAMETERS – 6.3.2. DISCHARGE

FIGURE 130
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 131
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 132
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

6.3. HYDROLOGICAL PARAMETERS – 6.3.3. EVAPOTRANSPIRATION

FIGURE 133
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
6.3. HYDROLOGICAL PARAMETERS – 6.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 6.3.4.1. RUNOFF

FIGURE 134
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 135
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 136
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
6.3. HYDROLOGICAL PARAMETERS – 6.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 6.3.4.2. DISCHARGE

FIGURE 137
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model.

FIGURE 138
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 139
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model.
CHAPTER 7

EUPHRATES RIVER: UPPER EUPHRATES
7.1. GENERAL PARAMETERS – 7.1.1. TEMPERATURE

FIGURE 140
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 141
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 142
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 143
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 144
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
7.1. GENERAL PARAMETERS – 7.1.2. PRECIPITATION

FIGURE 145
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 146
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 147
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 148
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 149
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
7.2. EXTREME EVENTS – 7.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 150
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 152
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

7.2. EXTREME EVENTS – 7.2.2. CHANGES IN EXTREME PRECIPITATION

FIGURE 153
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 155
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 154
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 156
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
7.3. HYDROLOGICAL PARAMETERS – 7.3.1. RUNOFF

FIGURE 157
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 158
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 159
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
7.3. HYDROLOGICAL PARAMETERS – 7.3.2. DISCHARGE

FIGURE 160
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 161
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 162
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

7.3. HYDROLOGICAL PARAMETERS – 7.3.3. EVAPOTRANSPIRATION

FIGURE 163
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
7.3. HYDROLOGICAL PARAMETERS – 7.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 7.3.4.1. RUNOFF

FIGURE 164
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 165
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 166
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
7.3. HYDROLOGICAL PARAMETERS – 7.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 7.3.4.2. DISCHARGE

FIGURE 167
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model.

FIGURE 168
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 169
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model.
8.1. GENERAL PARAMETERS – 8.1.1. TEMPERATURE

FIGURE 170
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 171
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 172
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 173
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 174
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
8.1. GENERAL PARAMETERS – 8.1.2. PRECIPITATION

FIGURE 175
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 176
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 177
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 178
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 179
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
8.2. EXTREME EVENTS – 8.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 180
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 182
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

8.2. EXTREME EVENTS – 8.2.2. CHANGES IN EXTREME PRECIPITATION

FIGURE 183
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 185
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 184
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 186
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
8.3. HYDROLOGICAL PARAMETERS – 8.3.1. RUNOFF

FIGURE 197
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 198
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 199
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
8.3. HYDROLOGICAL PARAMETERS – 8.3.2. DISCHARGE

FIGURE 190
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 191
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 192
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

8.3. HYDROLOGICAL PARAMETERS – 8.3.3. EVAPOTRANSPIRATION

FIGURE 193
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
8.3. HYDROLOGICAL PARAMETERS – 8.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 8.3.4.1. RUNOFF

FIGURE 194
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 195
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 196
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
8.3 HYDROLOGICAL PARAMETERS – 8.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 8.3.4.2. DISCHARGE

FIGURE 197
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model.

FIGURE 198
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 199
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model.
CHAPTER 9

JORDAN RIVER
9.1. GENERAL PARAMETERS – 9.1.1. TEMPERATURE

FIGURE 200
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 201
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 202
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 203
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 204
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
9.1. GENERAL PARAMETERS – 9.1.2. PRECIPITATION

FIGURE 205
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 206
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 207
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 208
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 209
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
9.2. EXTREME EVENTS – 9.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 210
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 211
Mean change in SU40 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 212
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 213
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 214
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 215
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 216
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
9.3. HYDROLOGICAL PARAMETERS – 9.3.1. RUNOFF

FIGURE 217
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 218
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 219
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
9.3. HYDROLOGICAL PARAMETERS – 9.3.2. DISCHARGE

FIGURE 220
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 221
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 222
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

9.3. HYDROLOGICAL PARAMETERS – 9.3.3. EVAPOTRANSPIRATION

FIGURE 223
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

HYPE MODEL

VIC MODEL
9.3. HYDROLOGICAL PARAMETERS – 9.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 9.3.4.1. RUNOFF

FIGURE 224
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 225
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 226
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
9.3. HYDROLOGICAL PARAMETERS – 9.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 9.3.4.2. DISCHARGE

FIGURE 227
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model.

FIGURE 228
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 229
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model.
CHAPTER 10

SENEGAL RIVER: SENEGAL HEADWATERS
10.1. GENERAL PARAMETERS – 10.1.1. TEMPERATURE

FIGURE 230
Mean change in annual temperature over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 231
Mean change in seasonal temperature (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 232
Mean change in seasonal temperature (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 233
Mean change in monthly temperature for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 234
Mean change in monthly temperature for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
10.1. GENERAL PARAMETERS – 10.1.2. PRECIPITATION

FIGURE 235
Mean change in annual precipitation over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 236
Mean change in seasonal precipitation (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 237
Mean change in seasonal precipitation (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 238
Mean change in monthly precipitation for mid-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period

FIGURE 239
Mean change in monthly precipitation for end-century for ensemble of three RCP 4.5 and RCP 8.5 projections compared to the reference period
10.2. EXTREME EVENTS – 10.2.1. CHANGES IN EXTREME TEMPERATURE

FIGURE 240
Mean change in SU35 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 242
Mean change in TR over time for ensemble of three RCP 4.5 and RCP 8.5 projections

10.2. EXTREME EVENTS – 10.2.2. CHANGES IN EXTREME PRECIPITATION

FIGURE 243
Mean change in CDD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 244
Mean change in CWD over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 245
Mean change in R10 over time for ensemble of three RCP 4.5 and RCP 8.5 projections

FIGURE 246
Mean change in R20 over time for ensemble of three RCP 4.5 and RCP 8.5 projections
10.3. HYDROLOGICAL PARAMETERS – 10.3.1. RUNOFF

FIGURE 247
Mean change in annual runoff over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 248
Mean change in seasonal runoff (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models

FIGURE 249
Mean change in seasonal runoff (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
10.3. HYDROLOGICAL PARAMETERS – 10.3.2. DISCHARGE

FIGURE 250
Mean change in annual discharge over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 251
Mean change in seasonal discharge (April-September) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

FIGURE 252
Mean change in seasonal discharge (October-March) over time for ensemble of three RCP 4.5 and RCP 8.5 projections using HYPE model

10.3. HYDROLOGICAL PARAMETERS – 10.3.3. EVAPOTRANSPIRATION

FIGURE 253
Mean change in annual evapotranspiration over time for ensemble of three RCP 4.5 and RCP 8.5 projections using two hydrological models
10.3. HYDROLOGICAL PARAMETERS – 10.3.4. COMPARISON 50 KM VS 25 KM RESOLUTIONS – 10.3.4.1. RUNOFF

FIGURE 254
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual runoff over time for two RCP 8.5 projections using HYPE model.

FIGURE 255
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 256
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal runoff (October-March) over time for two RCP 8.5 projections using HYPE model.
10.3. HYDROLOGICAL PARAMETERS – 10.3.4. COMPARISON 50 KM VS 25 KM RESOLUTION – 10.3.4.2. DISCHARGE

FIGURE 257
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in annual discharge over time for two RCP 8.5 projections using HYPE model.

FIGURE 258
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (April-September) over time for two RCP 8.5 projections using HYPE model.

FIGURE 259
Comparison between 25km (MNA22) and 50km (MNA44) resolutions for mean change in seasonal discharge (October-March) over time for two RCP 8.5 projections using HYPE model.
PART II

INTEGRATED VULNERABILITY ASSESSMENT
Integrated Vulnerability Assessment

Explanatory Note

CHAPTER 11
WATER SECTOR

11.1 Water availability

11.1.1 Impact chain

11.1.2 Reference period

11.1.2.1 Exposure

11.1.2.2 Sensitivity

11.1.2.3 Potential impact

11.1.2.4 Adaptive capacity

11.1.2.5 Vulnerability

11.1.3 Mid-century RCP 4.5

11.1.3.1 Exposure

11.1.3.2 Potential impact

11.1.3.3 Vulnerability

11.1.4 Mid-century RCP 8.5

11.1.4.1 Exposure

11.1.4.2 Potential impact

11.1.4.3 Vulnerability

11.1.5 End-century RCP 4.5

11.1.5.1 Exposure

11.1.5.2 Potential impact

11.1.5.3 Vulnerability

11.1.6 End-century RCP 8.5

11.1.6.1 Exposure

11.1.6.2 Potential impact

11.1.6.3 Vulnerability

CHAPTER 12
BIODIVERSITY AND ECOSYSTEMS SECTOR

12.1 Area covered by forests

12.1.1 Impact chain

12.1.2 Reference period

12.1.2.1 Exposure

12.1.2.2 Sensitivity

12.1.2.3 Potential impact

12.1.2.4 Adaptive capacity

12.1.2.5 Vulnerability

12.1.3 Mid-century RCP 4.5

12.1.3.1 Exposure

12.1.3.2 Potential impact

12.1.3.3 Vulnerability

12.1.4 Mid-century RCP 8.5

12.1.4.1 Exposure

12.1.4.2 Potential impact

12.1.5 End-century RCP 4.5

12.1.5.1 Exposure

12.1.5.2 Potential impact

12.1.5.3 Vulnerability

12.1.6 End-century RCP 8.5

12.1.6.1 Exposure

12.1.6.2 Potential impact

12.1.6.3 Vulnerability

CHAPTER 13
AGRICULTURE SECTOR

13.1 Water available for crops

13.1.1 Impact chain

13.1.2 Reference period

13.1.2.1 Exposure

13.1.2.2 Sensitivity
13.1.2.3 Potential impact 174
13.1.2.4 Adaptive capacity 174
13.1.2.5 Vulnerability 175

13.1.3 Mid-century RCP 4.5 176
13.1.3.1 Exposure 176
13.1.3.2 Potential impact 176
13.1.3.3 Vulnerability 177

13.1.4 Mid-century RCP 8.5 178
13.1.4.1 Exposure 178
13.1.4.2 Potential impact 178
13.1.4.3 Vulnerability 179

13.1.5 End-century RCP 4.5 180
13.1.5.1 Exposure 180
13.1.5.2 Potential impact 180
13.1.5.3 Vulnerability 181

13.1.6 End-century RCP 8.5 182
13.1.6.1 Exposure 182
13.1.6.2 Potential impact 182
13.1.6.3 Vulnerability 183

13.2 Water available for livestock 184
13.2.1 Impact chain 184
13.2.2 Reference period 185
13.2.2.1 Exposure 185
13.2.2.2 Sensitivity 185
13.2.2.3 Potential impact 186
13.2.2.4 Adaptive capacity 186
13.2.2.5 Vulnerability 187

13.2.3 Mid-century RCP 4.5 188
13.2.3.1 Exposure 188
13.2.3.2 Potential impact 188
13.2.3.3 Vulnerability 189

13.2.4 Mid-century RCP 8.5 190
13.2.4.1 Exposure 190
13.2.4.2 Potential impact 190
13.2.4.3 Vulnerability 191

13.2.5 End-century RCP 4.5 192
13.2.5.1 Exposure 192
13.2.5.2 Potential impact 192
13.2.5.3 Vulnerability 193

13.2.6 End-century RCP 8.5 194
13.2.6.1 Exposure 194
13.2.6.2 Potential impact 194
13.2.6.3 Vulnerability 195

13.3 Agriculture sector: Vulnerability 196
13.3.1 Reference period 196
13.3.2 Mid-century RCP 4.5 197
13.3.3 Mid-century RCP 8.5 198
13.3.4 End-century RCP 4.5 199
13.3.5 End-century RCP 8.5 200

CHAPTER 14
INFRASTRUCTURE AND HUMAN SETTLEMENTS SECTOR 201

14.1 Inland flooding area 202
14.1.1 Impact chain 202
14.1.2 Reference period 203
14.1.2.1 Exposure 203
14.1.2.2 Sensitivity 203
14.1.1.3 Potential impact 204
14.1.1.4 Adaptive capacity 204
14.1.1.5 Vulnerability 205

14.1.3 Mid-century RCP 4.5 206
14.1.3.1 Exposure 206
14.1.3.2 Potential impact 206
14.1.3.3 Vulnerability 207

14.1.4 Mid-century RCP 8.5 208
14.1.4.1 Exposure 208
14.1.4.2 Potential impact 208
14.1.4.3 Vulnerability 209

14.1.5 End-century RCP 4.5 210
14.1.5.1 Exposure 210
14.1.5.2 Potential impact 210
14.1.5.3 Vulnerability 211

14.1.6 End-century RCP 8.5 212
14.1.6.1 Exposure 212
14.1.6.2 Potential impact 212
14.1.6.3 Vulnerability 213

CHAPTER 15
PEOPLE SECTOR 215

15.1 Water available for drinking 216
15.1.1 Impact chain 216
15.1.2 Reference period 217
15.1.2.1 Exposure 217
15.1.2.2 Sensitivity 217
15.1.2.3 Potential impact 218
15.1.2.4 Adaptive capacity 218
15.1.2.5 Vulnerability 219

15.1.3 Mid-century RCP 4.5 220
15.1.3.1 Exposure 220
15.1.3.2 Potential impact 220
15.1.3.3 Vulnerability 221

15.1.4 Mid-century RCP 8.5 222
15.1.4.1 Exposure 222
15.1.4.2 Potential impact 222
15.1.4.3 Vulnerability 223

15.1.5 End-century RCP 4.5 224
15.1.5.1 Exposure 224
15.1.5.2 Potential impact 224
15.1.5.3 Vulnerability 225
15.1.6 End-century RCP 8.5 226
15.1.6.1 Exposure 226
15.1.6.2 Potential impact 226
15.1.6.3 Vulnerability 227
15.2 Health conditions due to heat stress 228
15.2.1 Impact chain 228
15.2.2 Reference period 229
15.2.2.1 Exposure 229
15.2.2.2 Sensitivity 229
15.2.2.3 Potential impact 230
15.2.2.4 Adaptive capacity 230
15.2.2.5 Vulnerability 231
15.2.3 Mid-century RCP 4.5 232
15.2.3.1 Exposure 232
15.2.3.2 Potential impact 232
15.2.3.3 Vulnerability 233
15.2.4 Mid-century RCP 8.5 234
15.2.4.1 Exposure 234
15.2.4.2 Potential impact 234
15.2.4.3 Vulnerability 235
15.2.5 End-century RCP 4.5 236
15.2.5.1 Exposure 236
15.2.5.2 Potential impact 236
15.2.5.3 Vulnerability 237
15.2.6 End-century RCP 8.5 238
15.2.6.1 Exposure 238
15.2.6.2 Potential impact 238
15.2.6.3 Vulnerability 239
15.3 Employment rate for the agricultural sector 240
15.3.1 Impact chain 240
15.3.2 Reference period 241
15.3.2.1 Exposure 241
15.3.2.2 Sensitivity 241
15.3.2.3 Potential impact 242
15.3.2.4 Adaptive capacity 242
15.3.2.5 Vulnerability 243
15.3.3 Mid-century RCP 4.5 244
15.3.3.1 Exposure 244
15.3.3.2 Potential impact 244
15.3.3.3 Vulnerability 245
15.3.4 Mid-century RCP 8.5 246
15.3.4.1 Exposure 246
15.3.4.2 Potential impact 246
15.3.4.3 Vulnerability 247
15.3.5 End-century RCP 4.5 248
15.3.5.1 Exposure 248
15.3.5.2 Potential impact 248
15.3.5.3 Vulnerability 249
15.3.6 End-century RCP 8.5 250
15.3.6.1 Exposure 250
15.3.6.2 Potential impact 250
15.3.6.3 Vulnerability 251
15.4 People Sector: Vulnerability 252
15.4.1 Reference period 252
15.4.2 Mid-century RCP 4.5 253
15.4.3 Mid-century RCP 8.5 254
15.4.4 End-century RCP 4.5 255
15.4.5 End-century RCP 8.5 256
FIGURES

CHAPTER 11
WATER SECTOR

FIGURE 260
Water availability – Impact chain

FIGURE 261
Water availability – Reference period – Exposure

FIGURE 262
Water availability – Sensitivity

FIGURE 263
Water availability – Reference period – Potential impact

FIGURE 264
Water availability – Adaptive capacity

FIGURE 265
Water availability – Reference period – Vulnerability

FIGURE 266
Water availability – Mid-century RCP 4.5 – Exposure

FIGURE 267
Water availability – Mid-century RCP 4.5 – Vulnerability

FIGURE 268
Water availability – Mid-century RCP 4.5 – Vulnerability

CHAPTER 12
BIODIVERSITY AND ECOSYSTEMS SECTOR

FIGURE 269
Water availability – Mid-century RCP 8.5 – Exposure

FIGURE 270
Water availability – Mid-century RCP 8.5 – Potential impact

FIGURE 271
Water availability – Mid-century RCP 8.5 – Vulnerability

FIGURE 272
Water availability – End-century RCP 4.5 – Exposure

FIGURE 273
Water availability – End-century RCP 4.5 – Potential impact

FIGURE 274
Water availability – End-century RCP 4.5 – Vulnerability

FIGURE 275
Water availability – End-century RCP 8.5 – Exposure

FIGURE 276
Water availability – End-century RCP 8.5 – Potential impact

FIGURE 277
Water availability – End-century RCP 8.5 – Vulnerability

FIGURE 278
Area covered by forests – Impact chain

FIGURE 279
Area covered by forests – Reference period – Exposure

FIGURE 280
Area covered by forests – Sensitivity

FIGURE 281
Area covered by forests – Reference period – Potential impact

FIGURE 282
Area covered by forests – Adaptive capacity

FIGURE 283
Area covered by forests – Reference period – Vulnerability

FIGURE 284
Area covered by forests – Mid-century RCP 4.5 – Exposure

FIGURE 285
Area covered by forests – Mid-century RCP 4.5 – Potential impact

FIGURE 286
Area covered by forests – Mid-century RCP 4.5 – Vulnerability

FIGURE 287
Area covered by forests – Mid-century RCP 8.5 – Exposure

FIGURE 288
Area covered by forests – Mid-century RCP 8.5 – Potential impact

FIGURE 289
Area covered by forests – Mid-century RCP 8.5 – Vulnerability

FIGURE 290
Area covered by forests – End-century RCP 4.5 – Exposure

FIGURE 291
Area covered by forests – End-century RCP 4.5 – Potential impact

FIGURE 292
Area covered by forests – End-century RCP 4.5 – Vulnerability

FIGURE 293
Area covered by forests – End-century RCP 8.5 – Exposure

FIGURE 294
Area covered by forests – End-century RCP 8.5 – Potential impact

FIGURE 295
Area covered by forests – End-century RCP 8.5 – Vulnerability

FIGURE 296
Area covered by wetlands – Impact chain

FIGURE 297
Area covered by wetlands – Reference period – Exposure

FIGURE 298
Area covered by wetlands – Sensitivity

FIGURE 299
Area covered by wetlands – Reference period – Potential impact
FIGURE 342 Water available for livestock – Reference period – Vulnerability 187

FIGURE 343 Water available for livestock – Mid-century RCP 4.5 – Exposure 188

FIGURE 344 Water available for livestock – Mid-century RCP 4.5 – Potential impact 188

FIGURE 345 Water available for livestock – Mid-century RCP 8.5 – Vulnerability 189

FIGURE 346 Water available for livestock – Mid-century RCP 8.5 – Exposure 190

FIGURE 347 Water available for livestock – Mid-century RCP 8.5 – Potential impact 190

FIGURE 348 Water available for livestock – End-century RCP 8.5 – Vulnerability 191

FIGURE 349 Water available for livestock – End-century RCP 8.5 – Exposure 192

FIGURE 350 Water available for livestock – End-century RCP 4.5 – Potential impact 192

FIGURE 351 Water available for livestock – End-century RCP 4.5 – Vulnerability 193

FIGURE 352 Water available for livestock – End-century RCP 8.5 – Exposure 194

FIGURE 353 Water available for livestock – End-century RCP 8.5 – Potential impact 194

FIGURE 354 Water available for livestock – End-century RCP 8.5 – Vulnerability 195

FIGURE 355 Agriculture sector: Vulnerability – Reference period 196

FIGURE 356 Agriculture sector: Vulnerability – Mid-century RCP 4.5 197

FIGURE 357 Agriculture sector: Vulnerability – Mid-century RCP 8.5 198

FIGURE 358 Agriculture sector: Vulnerability – End-century RCP 4.5 199

FIGURE 359 Agriculture sector: Vulnerability – End-century RCP 8.5 200

FIGURE 360 Inland flooding area – Impact chain 202

FIGURE 361 Inland flooding area – Reference period – Exposure 203

FIGURE 362 Inland flooding area – Sensitivity 203

FIGURE 363 Inland flooding area – Reference period – Potential impact 204

FIGURE 364 Inland flooding area – Adaptive capacity 204

FIGURE 365 Inland flooding area – Reference period – Vulnerability 205

CHAPTER 14
INFRASTRUCTURE AND HUMAN SETTLEMENTS SECTOR

FIGURE 366 Inland flooding area – Mid-century RCP 4.5 – Exposure 206

FIGURE 367 Inland flooding area – Mid-century RCP 4.5 – Potential impact 206

FIGURE 368 Inland flooding area – Mid-century RCP 4.5 – Vulnerability 207

FIGURE 369 Inland flooding area – Mid-century RCP 8.5 – Exposure 208

FIGURE 370 Inland flooding area – Mid-century RCP 8.5 – Potential impact 208

FIGURE 371 Inland flooding area – Mid-century RCP 8.5 – Vulnerability 209

FIGURE 372 Inland flooding area – End-century RCP 4.5 – Exposure 210

CHAPTER 15
PEOPLE SECTOR

FIGURE 373 Inland flooding area – End-century RCP 4.5 – Potential impact 210

FIGURE 374 Inland flooding area – End-century RCP 4.5 – Vulnerability 211

FIGURE 375 Inland flooding area – End-century RCP 8.5 – Exposure 212

FIGURE 376 Inland flooding area – End-century RCP 8.5 – Potential impact 212

FIGURE 377 Inland flooding area – End-century RCP 8.5 – Vulnerability 213

FIGURE 378 Water available for drinking – Impact chain 216

FIGURE 379 Water available for drinking – Reference period – Exposure 217

FIGURE 380 Water available for drinking – Sensitivity 217

FIGURE 381 Water available for drinking – Reference period – Potential impact 218
FIGURE 426
Employment rate for the agricultural sector – End-century RCP 4.5 – Exposure

FIGURE 427
Employment rate for the agricultural sector – End-century RCP 4.5 – Potential impact

FIGURE 428
Employment rate for the agricultural sector – End-century RCP 4.5 – Vulnerability

FIGURE 429
Employment rate for the agricultural sector – End-century RCP 8.5 – Exposure

FIGURE 430
Employment rate for the agricultural sector – End-century RCP 8.5 – Potential impact

FIGURE 431
Employment rate for the agricultural sector – End-century RCP 8.5 – Vulnerability

FIGURE 432
People Sector: Vulnerability – Reference period

FIGURE 433
People Sector: Vulnerability – Mid-century RCP 4.5

FIGURE 434
People Sector: Vulnerability – Mid-century RCP 8.5

FIGURE 435
People Sector: Vulnerability – End-century RCP 4.5

FIGURE 436
People Sector: Vulnerability – End-century RCP 8.5
Integrated Vulnerability Assessment
Explanatory Note

Results presented include impact chains and maps for each of the sectors studied, namely: Water (Chapter 11); Biodiversity and ecosystems (Chapter 12); Agriculture (Chapter 13); Infrastructure and human settlements (Chapter 14), and People (Chapter 15), along with their associated subsectors.

Results for each subsector were derived from indicators and their impact chains. Impact chains illustrate cause-effect relationships between identified indicators from each vulnerability component (exposure, sensitivity, and adaptive capacity), and the relevant climate change impact. The aggregated results are presented on maps representing exposure, sensitivity, adaptive capacity composite indicators, potential impact, and vulnerability, all of which are provided for the reference period. For future periods, only the exposure composite indicator, potential impact and vulnerability are presented since the sensitivity and adaptive capacity components are based on static data and remain the same as the reference period. Solely vulnerability maps are provided for each sector due to integrating vulnerability outputs from the pertinent subsectors directly. In cases where only one subsector is identified under a given sector, no sector maps are included due to the resultant output being the same. It is important to highlight that all maps pertaining to the future periods represent the change in specific components relative to the reference period.

With regard to exposure, please note that data corresponding to exposure for RHM data was based on the outputs from the hydrological model VIC. It is assumed that classified values obtained from the HYPE hydrological model will be the same. Also note that classified values for the exposure component for the reference period are based on the actual values, while they are based upon the change in value (compared to the reference period) for the future periods; thus caution is advised when comparing results.

Some considerations were made with regard to map presentation. Maps only reveal the area of interest for the given sector or subsector. For example, for the area covered by forests subsector, only forested areas are shown. Also, as a reminder, all results are based on classified data (not value based). Because the resultant range of aggregated results was limited, the final classification was based on the minimum and maximum values obtained for each sector or subsector and divided into equal intervals from 1 to 10. This classification scheme was applied for all provided maps for a given sector or subsector to facilitate ease of comparison between the composite indicators and the vulnerability. Lastly, the colour scheme utilized was based on a “stoplight” such that green is representative of low vulnerability and red is representative of high vulnerability. A similar colour scheme was applied for the differing components.

Selected maps showing vulnerability hotspots, representing areas which are especially vulnerable to climate change impacts, are only presented in the main report. Such areas are intended to draw special attention in terms of vulnerability for a particular sector or subsector. For RICCAR, hotspots were identified based on the top percentage of vulnerability among the two time periods and two scenarios for each climate change impact. Conceptual and methodological methods to define hotspots are varied among studies conducted elsewhere and are affected by spatial scale and uncertainties in data and outputs.

Further details on the methodology and data sources used for the vulnerability assessment are found in the RICCAR Technical Note ‘Integrated Vulnerability Assessment: Arab Regional Application.

Finally, it is essential to note that assumptions, further considerations and detailed observations specific to each output are mentioned in the main report, and it is therefore advised to refer to it consistently while reading through this annex.
CHAPTER 11

WATER SECTOR
Change in Water Availability – Impact Chain

Potential Impact (0.50)
- Technology (0.10)
 - Number of scientific and technical journal articles (0.46)
 - Information and communication technologies index (0.54)
- Institutions (0.10)
 - Governance index (0.54)
 - Disaster risk reduction committees (0.46)
- Economic Resources (0.11)
 - GDP per capita (0.36)
 - ODA (0.30)
 - Food imports as % of merchandise exports (0.34)
- Equity (0.09)
 - Female-to-male literacy ratio (0.51)
 - Migrants/refugees index (0.49)
- Environment (0.50)
 - Environment performance index (1.0)
- Infrastructure (0.50)
 - Number of scientific and technical journal articles (0.46)
 - Information and communication technologies index (0.54)
- Knowledge & Awareness (0.10)
 - E-government development (0.33)
 - Tertiary enrollment (0.32)
 - Adult literacy rate (0.39)
- Population (0.50)
 - Population density (0.14)
 - Total renewable water available per capita (0.50)
 - Water consumption per capita (0.13)
 - Share of water consumption in agriculture (0.13)
 - Refugee population (0.10)
- Natural (0.26)
 - Land use/land cover (0.27)
 - Soil storage capacity (0.25)
 - Degradation of vegetation cover (0.26)
 - Wetlands (0.22)
- Manmade (0.24)
 - Urban extent (0.47)
 - Areas served by dams (0.53)

Exposure (0.50)
- RCM
 - Change in temperature (0.17)
 - Change in precipitation (0.17)
- RHM
 - Change in runoff (0.17)
 - Change in evapotranspiration (0.17)

Extreme Events Indices
- Change in maximum length of dry spell (0.16)
- Change in maximum length of wet spell (0.16)
- Change in temperature (0.17)
- Change in precipitation (0.17)
- Change in runoff (0.17)
- Change in evapotranspiration (0.17)

Sensitivity (0.50)
- Change in maximum length of dry spell (0.16)
- Change in maximum length of wet spell (0.16)
- Change in temperature (0.17)
- Change in precipitation (0.17)
11.1. WATER AVAILABILITY – 11.1.2. REFERENCE PERIOD – 11.1.2.1. EXPOSURE

FIGURE 261

WATER: WATER AVAILABILITY

EXPOSURE: REFERENCE PERIOD

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

11.1. WATER AVAILABILITY – 11.1.2. REFERENCE PERIOD – 11.1.2.2. SENSITIVITY

FIGURE 262

WATER: WATER AVAILABILITY

SENSITIVITY

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Sensitivity
- High Sensitivity
11.1. WATER AVAILABILITY – 11.1.2. REFERENCE PERIOD – 11.1.2.3. POTENTIAL IMPACT

FIGURE 263

11.1. WATER AVAILABILITY – 11.1.2. REFERENCE PERIOD – 11.1.2.4. ADAPTIVE CAPABILITY

FIGURE 264
11.1 WATER AVAILABILITY – 11.1.2 REFERENCE PERIOD – 11.1.2.5 VULNERABILITY

FIGURE 265

WATER: WATER AVAILABILITY
VULNERABILITY: REFERENCE PERIOD

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability
High Vulnerability

RICCAR
Regional Improved Climate Change Assessment, Monitoring, and Vulnerability Assessment for the Arab Region
11.1. WATER AVAILABILITY – 11.1.3. MID-CENTURY RCP 4.5 – 11.1.3.1. EXPOSURE

FIGURE 266

![Map of water availability and exposure](image)

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

WATER: WATER AVAILABILITY
EXPOSURE: RCP 4.5 MID-CENTURY (2046-2055)

11.1. WATER AVAILABILITY – 11.1.3. MID-CENTURY RCP 4.5 – 11.1.3.2. POTENTIAL IMPACT

FIGURE 267

![Map of water availability and potential impact](image)

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

WATER: WATER AVAILABILITY
POTENTIAL IMPACT: RCP 4.5 MID-CENTURY (2061-2100)
11.1. WATER AVAILABILITY – 11.1.3. MID-CENTURY RCP 4.5 – 11.1.3.3. VULNERABILITY

FIGURE 268

Legend
- Major cities
- Areas not relevant to subsector
- Rivers
- Intermittent rivers

RICCAR

WATER AVAILABILITY:
VULNERABILITY:
RCP4.5 MID-CENTURY (2045-2065)
11.1. WATER AVAILABILITY – 11.1.4. MID-CENTURY RCP 8.5 – 11.1.4.1. EXPOSURE

FIGURE 269

![Map of water availability and exposure](image)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

WATER: WATER AVAILABILITY
EXPOSURE: RCP8.5 MID-CENTURY (2046-2065)

11.1. WATER AVAILABILITY – 11.1.4. MID-CENTURY RCP 8.5 – 11.1.4.2. POTENTIAL IMPACT

FIGURE 270

![Map of water availability and potential impact](image)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact

WATER: WATER AVAILABILITY
POTENTIAL IMPACT: RCP8.5 MID-CENTURY (2046-2065)
11.1. WATER AVAILABILITY – 11.1.4. MID-CENTURY RCP 8.5 – 11.1.4.3. VULNERABILITY
11.1. WATER AVAILABILITY – 11.1.5. END-CENTURY RCP 4.5 – 11.1.5.1. EXPOSURE

FIGURE 272

11.1. WATER AVAILABILITY – 11.1.5. END-CENTURY RCP 4.5 – 11.1.5.2. POTENTIAL IMPACT

FIGURE 273
11.1. WATER AVAILABILITY – 11.1.5. END-CENTURY RCP 4.5 – 11.1.5.3. VULNERABILITY

FIGURE 27A

WATER AVAILABILITY
VULNERABILITY: RCP4.5 END-CENTURY (2081-2100)

Legend

- Major cities
- Intermittent rivers
- Reservoirs
- Lakes
- Areas not relevant to subsector
- High Vulnerability
- Low Vulnerability
11.1. WATER AVAILABILITY – 11.1.6. END-CENTURY RCP 8.5 – 11.1.6.1. EXPOSURE

FIGURE 275

11.1. WATER AVAILABILITY – 11.1.6. END-CENTURY RCP 8.5 – 11.1.6.2. POTENTIAL IMPACT

FIGURE 276
11.1. WATER AVAILABILITY – 11.1.6. END-CENTURY RCP 8.5 – 11.1.6.3. VULNERABILITY
CHAPTER 12

BIODIVERSITY AND ECOSYSTEMS SECTOR
12.1. AREA COVERED BY FORESTS – 12.1.1. IMPACT CHAIN

TECHNOLOGY (0.10)
- Number of scientific and technical journal articles (0.46)
- Information and communication technologies index (0.54)

INSTITUTIONS (0.11)
- Governance index (0.32)
- Area under nature protection (0.37)
- Disaster risk reduction committees (0.31)

KNOWLEDGE & AWARENESS (0.10)
- E-Governement development (0.38)
- Tertiary enrollment (0.31)
- Adult literacy rate (0.31)

INFRASTRUCTURE (0.50)
- Areas served by dams (0.17)
- Installed desalination capacity per capita (0.17)
- Fossil groundwater (0.17)
- Access to improved water (0.17)
- Area equipped for irrigation (0.17)

ENVIRONMENT (0.50)
- Environment performance index (1.0)

TRANSPORT (0.24)
- Density of road network (1.0)

ECONOMIC RESOURCES (0.11)
- GDP per capita (0.53)
- ODA (0.47)

EQUITY (0.07)
- Female-to-male unemployment rate (0.40)
- Female-to-male literacy ratio (0.60)

POPULATION (0.25)
- Population density (0.60)
- Refugee population (0.40)

NATURAL (0.50)
- Soil storage capacity (0.12)
- Degradation of vegetation cover (0.13)
- Livestock density (0.11)
- Change in forest cover (0.50)
- Threatened forested areas (0.13)

MANMADE (0.25)
- Flood-prone areas (0.35)
- Urban extent (0.36)
- Road network (0.29)

ADAPTIVE CAPACITY (0.50)
- Change in evapotranspiration (0.25)

EXTREME EVENTS INDICES
- Change in maximum length of dry spell (0.25)
- Change in temperature (0.25)
- Change in precipitation (0.25)

POTENTIAL IMPACT (0.59)

SENSITIVITY (0.50)

EXPOSURE (0.50)

VULNERABILITY ASSESSMENT
12.1. AREA COVERED BY FORESTS – 12.1.2. REFERENCE PERIOD – 12.1.2.1. EXPOSURE

FIGURE 279

12.1. AREA COVERED BY FORESTS – 12.1.2. REFERENCE PERIOD – 12.1.2.2. SENSITIVITY

FIGURE 280
12.1. AREA COVERED BY FORESTS – 12.1.2. REFERENCE PERIOD – 12.1.2.3. POTENTIAL IMPACT

FIGURE 281

12.1. AREA COVERED BY FORESTS – 12.1.2. REFERENCE PERIOD – 12.1.2.4. ADAPTIVE CAPACITY

FIGURE 282
12.1. AREA COVERED BY FORESTS – 12.1.2. REFERENCE PERIOD – 12.1.2.5. VULNERABILITY
12.1. AREA COVERED BY FORESTS – 12.1.3. MID-CENTURY RCP 4.5 – 12.1.3.1. EXPOSURE

FIGURE 284

![Map showing area covered by forests in the Mid-Century RCP 4.5 scenario.](image)

Legend
- Lakes
- Reservoirs
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

12.1. AREA COVERED BY FORESTS – 12.1.3. MID-CENTURY RCP 4.5 – 12.1.3.2. POTENTIAL IMPACT

FIGURE 285

![Map showing potential impact of forest area in the Mid-Century RCP 4.5 scenario.](image)

Legend
- Lakes
- Reservoirs
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact
12.1. AREA COVERED BY FORESTS – M.1.3. MID-CENTURY RCP 4.5 – 12.1.3.3. VULNERABILITY

FIGURE 286

Biodiversity and ecosystems: Area covered by forests

Vulnerability: RCP4.5 Mid-century (2046-2065)

Legend:
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector

RICCAR
Regional Centre for the Assessment of Climate Change Impacts on Water Resources and Socio-economic Vulnerability in the Arab Region
12.1. AREA COVERED BY FORESTS – 12.1.4. MID-CENTURY RCP 8.5 – 12.1.4.1. EXPOSURE

FIGURE 287

12.1. AREA COVERED BY FORESTS – 12.1.4. MID-CENTURY RCP 8.5 – 12.1.4.2. POTENTIAL IMPACT

FIGURE 288
12.1. AREA COVERED BY FORESTS – 12.1.4. MID-CENTURY RCP 8.5 – 12.1.4.3. VULNERABILITY

FIGURE 289
12.1. AREA COVERED BY FORESTS – 12.1.5. END-CENTURY RCP 4.5 – 12.1.5.1. EXPOSURE

FIGURE 290

12.1. AREA COVERED BY FORESTS – 12.1.5. END-CENTURY RCP 4.5 – 12.1.5.2. POTENTIAL IMPACT

FIGURE 291
12.1. AREA COVERED BY FORESTS – 12.1.5. END-CENTURY RCP 4.5 – 12.1.5.3. VULNERABILITY

FIGURE 292

Biodiversity and Ecosystems:

Area Covered by Forests

Vulnerability: RCP 4.5 End-Century (2081-2100)

Legend:
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability
High Vulnerability
12.1. AREA COVERED BY FORESTS – 12.1.6. END-CENTURY RCP 8.5 – 12.1.6.1. EXPOSURE

FIGURE 293

12.1. AREA COVERED BY FORESTS – 12.1.6. END-CENTURY RCP 8.5 – 12.1.6.2. POTENTIAL IMPACT

FIGURE 294
12.1. AREA COVERED BY FORESTS – 12.1.6. END-CENTURY RCP 8.5 – 12.1.6.3. VULNERABILITY

FIGURE 295

Biodiversity and ecosystems: Area covered by forests
Vulnerability: RCP8.5 end-century (2081-2100)

Legend:
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability
High Vulnerability
FIGURE 296

EXPOSURE (0.50)

RCM
- Change in temperature (0.20)
- Change in precipitation (0.20)

RHM
- Change in runoff (0.20)
- Change in evapotranspiration (0.20)

EXTREME EVENTS INDICES
- Change in maximum length of dry spell (0.20)

SENSITIVITY (0.50)

POPULATION (0.25)
- Population density (1.0)

NATURAL (0.50)
- Degradation of vegetation cover (0.27)
- Livestock density (0.23)
- Wetlands (0.50)*

MANMADE (0.25)
- Floodprone areas (0.35)*
- Urban extent (0.35)
- Road network (0.30)

ADAPTIVE CAPACITY (0.50)

KNOWLEDGE & AWARENESS (0.11)
- E-Governement development (0.38)
- Tertiary enrolment (0.30)
- Adult literacy rate (0.32)

TECHNOLOGY (0.10)
- Number of scientific and technical journal articles (0.45)
- Information and communication technologies index (0.55)

INSTITUTIONS (0.10)
- Governance index (0.32)
- Area under nature protection (0.37)
- Disaster risk reduction committees (0.31)

INFRASTRUCTURE (0.50)
- Areas served by dams (0.17)
- Installed desalination capacity per capita (0.17)
- Fossil groundwater (0.17)
- Access to improved water (0.17)
- Access to improved sanitation (0.16)
- Area equipped for irrigation (0.16)
- Environment performance index (1.0)

ENVIRONMENT (0.50)
- Environment performance index (1.0)

WATER & SANITATION (0.14)
- Access to electricity (0.50)
- Energy consumption (0.50)

ENERGY (0.13)
- Access to electricity (0.50)
- Energy consumption (0.50)

HEALTH (0.11)
- Health index (1.0)

TRANSPORT (0.12)
- Density of road network (1.0)

ECONOMIC RESOURCES (0.11)
- GDP per capita (0.52)
- ODA (0.48)

EQUITY (0.07)
- Migrants/refugees index (1.0)

* Subsector specific classification
12.2. AREA COVERED BY WETLANDS – 12.2.2. REFERENCE PERIOD – 12.2.2.1. EXPOSURE

FIGURE 297

12.2. AREA COVERED BY WETLANDS – 12.2.2. REFERENCE PERIOD – 12.2.2.2. SENSITIVITY

FIGURE 298
12.2. AREA COVERED BY WETLANDS – 12.2.2. REFERENCE PERIOD – 12.2.2.3. POTENTIAL IMPACT

FIGURE 299

12.2. AREA COVERED BY WETLANDS – 12.2.2. REFERENCE PERIOD – 12.2.2.4. ADAPTIVE CAPACITY

FIGURE 300
12.2. AREA COVERED BY WETLANDS – 12.2.2. REFERENCE PERIOD – 12.2.2.5. VULNERABILITY

FIGURE 301
12.2. AREA COVERED BY WETLANDS – 12.2.3. MID-CENTURY RCP 4.5 – 12.2.3.1. EXPOSURE

FIGURE 302

Biodiversity and Ecosystems: Area Covered by Wetlands

EXPOSURE: RCP4.5 Mid-Century (2044-2065)

Legend:
- Lakes
- Reservoirs
- Intermediate
- Areas not relevant to indicator

Low Exposure

High Exposure

12.2. AREA COVERED BY WETLANDS – 12.2.3. MID-CENTURY RCP 4.5 – 12.2.3.2. POTENTIAL IMPACT

FIGURE 303

Biodiversity and Ecosystems: Area Covered by Wetlands

POTENTIAL IMPACT: RCP4.5 Mid-Century (2044-2065)

Legend:
- Lakes
- Reservoirs
- Intermediate
- Areas not relevant to indicator

Low Potential Impact

High Potential Impact
12.2. AREA COVERED BY WETLANDS – 12.2.3. MID-CENTURY RCP 4.5 – 12.2.3.3. VULNERABILITY

FIGURE 304
12.2. AREA COVERED BY WETLANDS – 12.2.4. MID-CENTURY RCP 8.5 – 12.2.4.1. EXPOSURE

FIGURE 305

12.2. AREA COVERED BY WETLANDS – 12.2.4. MID-CENTURY RCP 8.5 – 12.2.4.2. POTENTIAL IMPACT

FIGURE 306
Biodiversity and Ecosystems: Area Covered by Wetlands

Vulnerability: RCP 8.5 Mid-Century (2046-2065)

Legend:
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability

High Vulnerability
12.2. AREA COVERED BY WETLANDS – 12.2.5. END-CENTURY RCP 4.5 – **12.2.5.1. EXPOSURE**

FIGURE 308

12.2. AREA COVERED BY WETLANDS – 12.2.5. END-CENTURY RCP 4.5 – **12.2.5.2. POTENTIAL IMPACT

FIGURE 309
12.2. AREA COVERED BY WETLANDS – 12.2.5. END-CENTURY RCP 4.5 – 12.2.5.3. VULNERABILITY

FIGURE 310
12.2. AREA COVERED BY WETLANDS – 12.2.6. END-CENTURY RCP 8.5 – 12.2.6.1. EXPOSURE

FIGURE 311

12.2. AREA COVERED BY WETLANDS – 12.2.6. END-CENTURY RCP 8.5 – 12.2.6.2. POTENTIAL IMPACT

FIGURE 312
12.2. AREA COVERED BY WETLANDS – 12.2.6. END-CENTURY RCP 8.5 – 12.2.6.3. VULNERABILITY

Legend

- **Lakes**
- **Reservoirs**
- **Rivers**
- **Intermittent rivers**
- **Major cities**
- **Area not relevant to subsector**

RICCAR
Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Bio-Economic Vulnerability in the Arab Region
12.3. BIODIVERSITY AND ECOSYSTEMS SECTOR: VULNERABILITY – 12.3.1. REFERENCE PERIOD

FIGURE 314

[Map showing vulnerability assessment for Biodiversity and Ecosystems Sector.]
12.3. BIODIVERSITY AND ECOSYSTEMS SECTOR: VULNERABILITY – 12.3.2. MID-CENTURY RCP 4.5

FIGURE 315
12.3. BIODIVERSITY AND ECOSYSTEMS SECTOR: VULNERABILITY – 12.3.3. MID-CENTURY RCP 8.5

FIGURE 316

Biodiversity and Ecosystems Sector: Vulnerability – Mid-Century RCP 8.5 (2045-2065)

Legend:
- Major cities
- Area not relevant to sector

Map depicting vulnerability levels across different regions.
12.3. BIODIVERSITY AND ECOSYSTEMS SECTOR: VULNERABILITY – 12.3.4. END-CENTURY RCP 4.5

FIGURE 317

Biodiversity and ecosystems sector: Vulnerability – end-century RCP 4.5

Legend:
- Major cities
- Area not relevant to sector
- Rivers
- Intermittent rivers
- Lakes
- Reservoirs

Map showing vulnerability assessment across different regions.
12.3. BIODIVERSITY AND ECOSYSTEMS SECTOR: VULNERABILITY – 12.3.5. END-CENTURY RCP 8.5

FIGURE 318

Biodiversity and ecosystems sector vulnerability: RCP 8.5 end-century (2081-2100)

Legend:
- Major cities
- Area not relevant to sector
- Rivers
- Intermittent rivers
- Lakes
- Reservoirs

[Map showing vulnerability assessment for the end-century RCP 8.5 scenario in the biodiversity and ecosystems sector.]
13.1. WATER AVAILABLE FOR CROPS – 13.1.1. IMPACT CHAIN

TECHNOLOGY (0.11)
- Number of scientific and technical journal articles (0.45)
- Information and communication technologies index (0.59)

KNOWNLEDGE & AWARENESS (0.11)
- E-Governement development (0.34)
- Tertiary enrollment (0.33)
- Adult literacy rate (0.33)

INFRASTRUCTURE (0.50)
- WATER & SANITATION (0.50)
 - Areas served by dams (0.17)
 - Installed desalination capacity per capita (0.17)
 - Fossil groundwater (0.17)
 - Access to improved water (0.17)
 - Access to improved sanitation (0.16)
 - Area equipped for irrigation (0.16)
- ENVIRONMENT (0.17)
 - Environment performance index (1.0)
- ENERGY (0.17)
 - Access to electricity (0.50)
 - Energy consumption (0.50)
- TRANSPORT (0.16)
 - Density of road network (1.0)

ECONOMIC RESOURCES (0.10)
- GDP per capita (0.35)
- ODA (0.28)
- Food imports as % of merchandise exports (0.37)

EQUITY (0.08)
- Female-to-male literacy ratio (0.52)
- Migrants/refugees index (0.48)

POPULATION (0.50)
- Population density (0.12)
- Share of agricultural labor force in total labor (0.12)
- Share of total water available in agriculture (0.50)
- Share of agricultural GDP (0.13)

NATURAL (0.26)
- Soil storage capacity (0.34)
- Degradation of vegetation cover (0.32)
- Rainfed areas (0.34)

MANMADE (0.24)
- Floodprone areas (0.46)
- Irrigated areas (0.54)

SENSITIVITY (0.50)
- Population density (0.12)
- Share of agricultural labor force in total labor (0.12)
- Share of total water available in agriculture (0.50)
- Share of agricultural GDP (0.13)

EXPOSURE (0.50)
- Potential impact (0.50)

VULNERABILITY ASSESSMENT
- RHM
 - Change in runoff (0.17)
 - Change in evapotranspiration (0.17)
- RIM
 - Change in temperature (0.17)
 - Change in precipitation (0.17)
 - Change in evapotranspiration (0.17)

ADAPTIVE CAPACITY (0.50)
- Extreme events indices
 - Change in number of hot day (0.16)
 - Change in maximum length of dry spell (0.16)

POTENTIAL IMPACT (0.50)
- Potential impact (0.50)

FIGURE 320

13.1. WATER AVAILABLE FOR CROPS – 13.1.2. REFERENCE PERIOD – 13.1.2.2. SENSITIVITY

FIGURE 321
13.1. WATER AVAILABLE FOR CROPS – 13.1.2. REFERENCE PERIOD – 13.1.2.3. POTENTIAL IMPACT

FIGURE 322

13.1. WATER AVAILABLE FOR CROPS – 13.1.2. REFERENCE PERIOD – 13.1.2.4. ADAPTIVE CAPACITY

FIGURE 323
13.1. WATER AVAILABLE FOR CROPS – 13.1.2. REFERENCE PERIOD – 13.1.2.5. VULNERABILITY

FIGURE 325

AGRICULTURE: WATER AVAILABLE FOR CROPS
EXPOSURE: RCP4.5 MID-CENTURY (2046-2055)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Exposure
High Exposure

13.1. WATER AVAILABLE FOR CROPS – 13.1.3. MID-CENTURY RCP 4.5 – 13.1.3.2. POTENTIAL IMPACT

FIGURE 326

AGRICULTURE: WATER AVAILABLE FOR CROPS
POTENTIAL IMPACT: RCP4.5 MID-CENTURY (2046-2065)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Potential Impact
High Potential Impact
13.1. WATER AVAILABLE FOR CROPS – 13.1.3. MID-CENTURY RCP 4.5 – 13.1.3.3. VULNERABILITY

FIGURE 328

AGRICULTURE: WATER AVAILABLE FOR CROPS
EXPOSURE: RCP 8.5 MID-CENTURY (2046-2055)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

13.1. WATER AVAILABLE FOR CROPS – 13.1.4. MID-CENTURY RCP 8.5 – 13.1.4.2. POTENTIAL IMPACT

FIGURE 329

AGRICULTURE: WATER AVAILABLE FOR CROPS
POTENTIAL IMPACT: RCP 8.5 MID-CENTURY (2046-2065)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact
13.1. WATER AVAILABLE FOR CROPS – 13.1.4. MID-CENTURY RCP 8.5 – 13.1.4.3. VULNERABILITY

FIGURE 330
13.1. WATER AVAILABLE FOR CROPS – 13.1.5. END-CENTURY RCP 4.5 – 13.1.5.1. EXPOSURE

FIGURE 331

13.1. WATER AVAILABLE FOR CROPS – 13.1.5. END-CENTURY RCP 4.5 – 13.1.5.2. POTENTIAL IMPACT

FIGURE 332
13.1. WATER AVAILABLE FOR CROPS – 13.1.5. END-CENTURY RCP 4.5 – 13.1.5.3. VULNERABILITY

Figure 333

AGRICULTURE: WATER AVAILABLE FOR CROPS
VULNERABILITY: RCP 4.5 END-CENTURY (2021-2100)

Legend
- Major cities
- Intermittent rivers
- Reservoirs
- Lakes

Map showing the water availability for crops and vulnerability assessment for the Arab region under RCP 4.5 climate change scenario.

FIGURE 334

FIGURE 335
FIGURE 3.37

EXPOSURE (0.50)

RCM
- Change in temperature (0.20)

RHM
- Change in runoff (0.20)
- Change in evapotranspiration (0.20)

EXTREME EVENTS INDICES
- Change in number of very hot days (0.20)
- Change in maximum length of dry spell (0.20)

SENSITIVITY (0.50)

POPULATION (0.26)
- Population density (0.23)
- Share of agricultural labor force in total labor (0.24)
- Total renewable water available per capita (0.27)
- Share of water consumption in agriculture (0.27)

NATURAL (0.50)
- Land use - land cover (0.17)*
- Soil storage capacity (0.16)
- Degradation of vegetation cover (0.17)
- Livestock density (0.50)

MANMADE (0.24)
- Irrigated areas (0.52)*
- Urban extent (0.48)

POTENTIAL IMPACT (0.50)

KNOWLEDGE & AWARENESS (0.11)
- Tertiary enrollment (0.48)
- Adult literacy rate (0.52)

TECHNOLOGY (0.10)
- Number of scientific and technical journal articles (0.46)
- Information and communication technologies index (0.54)

INSTITUTIONS (0.10)
- Governance index (0.50)
- Area under nature protection (0.50)

INFRASTRUCTURE (0.50)
- Areas served by dams (0.17)
- Installed desalination capacity per capita (0.17)
- Fossil groundwater (0.17)
- Access to improved water (0.17)
- Access to improved sanitation (0.16)
- Area equipped for irrigation (0.16)

ENVIRONMENT (0.18)
- Environment performance index (1.0)

ENERGY (0.17)
- Access to electricity (0.50)
- Energy consumption (0.50)

TRANSPORT (0.15)
- Density of road network (1.0)

ADAPTIVE CAPACITY (0.50)

ECONOMIC RESOURCES (0.10)
- GDP per capita (0.36)
- ODA (0.28)
- Food imports as % of merchandise exports (0.36)

EQUITY (0.09)
- Female-to-male literacy ratio (0.51)
- Migrants/refugees index (0.49)

* Subsector specific classification
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.2. REFERENCE PERIOD – 13.2.2.1. EXPOSURE

FIGURE 338

13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.2. REFERENCE PERIOD – 13.2.2.2. SENSITIVITY

FIGURE 339
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.2. REFERENCE PERIOD – 13.2.2.3. POTENTIAL IMPACT

FIGURE 340

13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.2. REFERENCE PERIOD – 13.2.2.4. ADAPTIVE CAPACITY

FIGURE 341
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.2. REFERENCE PERIOD – 13.2.2.5. VULNERABILITY
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.3. MID-CENTURY RCP 4.5 – 13.2.3.1. EXPOSURE

FIGURE 343

Agriculture: Water Available for Livestock
Exposure: RCP4.5 Mid-Century (2046-2065)

Legend:
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- Medium Exposure
- High Exposure

13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.3. MID-CENTURY RCP 4.5 – 13.2.3.2. POTENTIAL IMPACT

FIGURE 344

Agriculture: Water Available for Livestock
Potential Impact: RCP4.5 Mid-Century (2046-2065)

Legend:
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- Medium Potential Impact
- High Potential Impact
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.3. MID-CENTURY RCP 4.5 – 13.2.3.3. VULNERABILITY

FIGURE 345

AGRICULTURE: WATER AVAILABLE FOR LIVESTOCK
VULNERABILITY: RCP4.5 MID-CENTURY (2046-2065)

Legend
- Major cities
- Areas not relevant to subsector
- Rivers
- Intermittent rivers
- Lakes
- Reservoirs

High Vulnerability
Low Vulnerability
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.4. MID-CENTURY RCP 8.5 – 13.2.4.1. EXPOSURE

FIGURE 346

13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.4. MID-CENTURY RCP 8.5 – 13.2.4.2. POTENTIAL IMPACT

FIGURE 347
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.4. MID-CENTURY RCP 8.5 – 13.2.4.3. VULNERABILITY

FIGURE 348
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.5. END-CENTURY RCP 4.5 – 13.2.5.1. EXPOSURE

FIGURE 349

13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.5. END-CENTURY RCP 4.5 – 13.2.5.2. POTENTIAL IMPACT

FIGURE 350
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.5. END-CENTURY RCP 4.5 – 13.2.5.3. VULNERABILITY

FIGURE 351

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

RICCAR
Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.6. END-CENTURY RCP 8.5 – 13.2.6.1. EXPOSURE

FIGURE 352

13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.6. END-CENTURY RCP 8.5 – 13.2.6.2. POTENTIAL IMPACT

FIGURE 353
13.2. WATER AVAILABLE FOR LIVESTOCK – 13.2.6. END-CENTURY RCP 8.5 – 13.2.6.3. VULNERABILITY

FIGURE 354

[Map showing water availability for livestock in the Middle East and North Africa region under RCP 8.5, with color coding indicating vulnerability levels.]
13.3. AGRICULTURE SECTOR: VULNERABILITY – 13.3.1. REFERENCE PERIOD
13.3. AGRICULTURE SECTOR: VULNERABILITY – MID-CENTURY RCP 4.5

FIGURE 356

AGRICULTURE SECTOR

VULNERABILITY: RCP4.5 MID-CENTURY (2046-2065)

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to sector

Low Vulnerability to High Vulnerability
13.3. AGRICULTURE SECTOR: VULNERABILITY – 13.3.3. MID-CENTURY RCP 8.5
13.3. AGRICULTURE SECTOR: VULNERABILITY – 13.3.4. END-CENTURY RCP 4.5

FIGURE 358
13.3. AGRICULTURE SECTOR: VULNERABILITY – 13.3.5. END-CENTURY RCP 8.5

FIGURE 359

AGRICULTURE SECTOR
VULNERABILITY: RCP8.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to sector

Low Vulnerability
High Vulnerability

RICCAR
Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Horn Region
CHAPTER 14

INFRASTRUCTURE AND HUMAN SETTLEMENTS SECTOR
FIGURE 360

EXPOSURE (0.50)
- RHM
 - Change in runoff (0.34)*

EXTREME EVENTS INDICES
- Change in annual count of 10 mm precipitation days (0.33)*
- Change in annual count of 20 mm precipitation days (0.33)*

SENSITIVITY (0.50)
- POPULATION (0.25)
 - Population density (0.21)
 - Share of agricultural labor force (0.14)
 - Share of children and elderly of the population (0.14)
 - Share of agriculture in GDP (0.15)
 - Refugee population (0.18)
 - Migrant population (0.18)

- NATURAL (0.25)
 - Land use - land cover (0.23)*
 - Soil erodibility (0.21)
 - Degradation of vegetation cover (0.22)
 - Livestock density (0.15)
 - Wetlands areas (0.19)*

- MANMADE (0.50)
 - Flood-prone areas (0.50)
 - Urban extent (0.15)
 - Road network (0.13)
 - Areas under cultural heritage protection (0.11)
 - Wastewater treatment (0.11)

ADAPTIVE CAPACITY (0.50)
- KNOWLEDGE & AWARENESS (0.10)
 - E-Government development (0.38)
 - Tertiary enrollment (0.31)
 - Adult literacy rate (0.31)

- TECHNOLOGY (0.10)
 - Number of scientific and technical journal articles (0.39)
 - Information and communication technologies index (0.61)

- INSTITUTIONS (0.10)
 - Governance index (0.34)
 - Areas under nature protection (0.31)
 - Disaster risk reduction committees (0.35)

- INFRASTRUCTURE (0.12)
 - WATER & SANITATION (0.32)
 - Areas served by dams (1.0)

- ENVIRONMENT (0.32)
 - Environment performance index (1.0)

- TRANSPORT (0.36)
 - Density of road network (1.0)

- ECONOMIC RESOURCES (0.50)
 - GDP per capita (0.50)
 - ODA (0.50)

- EQUITY (0.07)
 - Female to male literacy ratio (0.34)
 - Years lost due to disability (0.29)
 - Migrants/refugees index (0.37)

* Subsector specific classification
14.1. INLAND FLOODING AREA – 14.1.2. REFERENCE PERIOD – 14.1.2.1. EXPOSURE

FIGURE 361

14.1. INLAND FLOODING AREA – 14.1.2. REFERENCE PERIOD – 14.1.2.2. SENSITIVITY

FIGURE 362
14.1. INLAND FLOODING AREA – 14.1.2. REFERENCE PERIOD – 14.1.1.3. POTENTIAL IMPACT

FIGURE 363

![Map of Inland Flooding Area: Reference Period - Potential Impact](image)

Legend:
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact

14.1. INLAND FLOODING AREA – 14.1.2. REFERENCE PERIOD – 14.1.1.4. ADAPTIVE CAPACITY

FIGURE 364

![Map of Inland Flooding Area: Reference Period - Adaptive Capacity](image)

Legend:
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Adaptive Capacity
- High Adaptive Capacity
14.1. INLAND FLOODING AREA – 14.1.2. REFERENCE PERIOD – 14.1.1.5. VULNERABILITY
14.1. INLAND FLOODING AREA – 14.1.3. MID-CENTURY RCP 4.5 – 14.1.3.1. EXPOSURE

FIGURE 366

14.1. INLAND FLOODING AREA – 14.1.3. MID-CENTURY RCP 4.5 – 14.1.3.2. POTENTIAL IMPACT

FIGURE 367
14.1. INLAND FLOODING AREA – 14.1.3. MID-CENTURY RCP 4.5 – 14.1.3.3. VULNERABILITY

FIGURE 368

INFRASTRUCTURE AND HUMAN SETTLEMENTS: INLAND FLOODING AREA

VULNERABILITY: RCP4.5 MID-CENTURY (2045-2065)

Legend

- Major cities
- Areas not relevant to subsector

Legend

- Rivers
- Intermittent rivers

Legend

- Lakes
- Reservoirs

RICCAR

ARAB CLIMATE CHANGE ASSESSMENT REPORT - TECHNICAL ANNEX
14.1. INLAND FLOODING AREA – 14.1.4. MID-CENTURY RCP 8.5 – 14.1.4.1. EXPOSURE

FIGURE 369

14.1. INLAND FLOODING AREA – 14.1.4. MID-CENTURY RCP 8.5 – 14.1.4.2. POTENTIAL IMPACT

FIGURE 370
14.1. INLAND FLOODING AREA - 14.1.4. MID-CENTURY RCP 8.5 - 14.1.4.3. VULNERABILITY

FIGURE 371

INFRASRTUCTURE AND HUMAN SETTLEMENTS: INLAND FLOODING AREA

VULNERABILITY: RCP8.5 MID-CENTURY (2045-2065)

<table>
<thead>
<tr>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakes</td>
</tr>
<tr>
<td>Reservoirs</td>
</tr>
<tr>
<td>Rivers</td>
</tr>
<tr>
<td>Intermittent rivers</td>
</tr>
<tr>
<td>Major cities</td>
</tr>
<tr>
<td>Area not relevant to subsector</td>
</tr>
</tbody>
</table>

- Low Vulnerability
- High Vulnerability
14.1. INLAND FLOODING AREA – 14.1.5. END-CENTURY RCP 4.5 – 14.1.5.1. EXPOSURE

FIGURE 372

INFRASTRUCRURE AND HUMAN SETTLEMENTS: INLAND FLOODING AREA

EXPOSURE: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

FIGURE 373

INFRASTRUCRURE AND HUMAN SETTLEMENTS: INLAND FLOODING AREA

POTENTIAL IMPACT: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact
14.1 INLAND FLOODING AREA – 14.1.5. END-CENTURY RCP 4.5 – 14.1.5.3. VULNERABILITY

FIGURE 374

INFRASTRUCUTRE AND HUMAN SETTLEMENTS: INLAND FLOODING AREA

VULNERABILITY: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability
High Vulnerability

FIGURE 375

14.1. INLAND FLOODING AREA – 14.1.6. END-CENTURY RCP 8.5 – 14.1.6.2. POTENTIAL IMPACT

FIGURE 376
14.1. INLAND FLOODING AREA – 14.1.6. END-CENTURY RCP 8.5 – 14.1.6.3. VULNERABILITY
CHAPTER 15

PEOPLE SECTOR
15.1. WATER AVAILABLE FOR DRINKING – 15.1.1. IMPACT CHAIN

TECHNOLOGY (0.11)
- Number of scientific and technical journal articles (0.43)
- Information and communication technologies index (0.57)

INSTITUTIONS (0.10)
- Governance index (0.40)
- Disaster risk reduction committees (0.33)

KNOWLEDGE & AWARENESS (0.10)
- E-Government development (0.37)
- Tertiary enrollment (0.31)
- Adult literacy rate (0.32)

INFRASTRUCTURE (0.50)
- WATER & SANITATION (0.50)
 - Areas served by dams (0.20)
 - Installed desalination capacity per capita (0.20)
 - Fossil groundwater (0.20)
 - Access to improved water (0.20)
 - Access to improved sanitation (0.20)

ENVIRONMENT (0.14)
- Environment performance index (1.0)

HEALTH (0.11)
- Health index (1.0)

ENERGY (0.14)
- Access to electricity (0.50)
- Energy consumption (0.50)

TRANSPORT (0.12)
- Density of road network (1.0)

ECONOMIC RESOURCES (0.11)
- GDP per capita (0.28)
- Age dependency ratio (0.22)
- Food imports as % of merchandise exports (0.25)

EQUITY (0.08)
- Female-to-male literacy ratio (0.24)
- Years lost due to disability (0.21)
- Migrants/refugees index (0.36)

POPULATION (0.50)
- Population density (0.09)
- Share of children and elderly of the population (0.11)
- Total renewable water available per capita (0.50)
- Water consumption per capita (0.10)
- Share of water consumption in agriculture (0.08)
- Refugee population (0.08)

NATURAL (0.26)
- Livestock density (1.0)

MANMADE (0.24)
- Irrigated areas (0.48)
- Urban extent (0.52)

ADAPTIVE CAPACITY (0.50)

SENSITIVITY (0.50)

EXPOSURE (0.50)

POTENTIAL IMPACT (0.50)

VULNERABILITY ASSESSMENT (0.50)
15.1. WATER AVAILABLE FOR DRINKING – 15.1.2. REFERENCE PERIOD – 15.1.2.1. EXPOSURE

FIGURE 379

15.1. WATER AVAILABLE FOR DRINKING – 15.1.2. REFERENCE PERIOD – 15.1.2.2. SENSITIVITY

FIGURE 380
15.1. WATER AVAILABLE FOR DRINKING – 15.1.2. REFERENCE PERIOD – 15.1.2.3. POTENTIAL IMPACT

FIGURE 381

15.1. WATER AVAILABLE FOR DRINKING – 15.1.2. REFERENCE PERIOD – 15.1.2.4. ADAPTIVE CAPACITY

FIGURE 382
15.1. WATER AVAILABLE FOR DRINKING – 15.1.2. REFERENCE PERIOD – 15.1.2.5. VULNERABILITY
15.1. WATER AVAILABLE FOR DRINKING – 15.1.3. MID-CENTURY RCP 4.5 – 15.1.3.1. EXPOSURE

FIGURE 384

PEOPLE: WATER AVAILABLE FOR DRINKING
EXPOSURE: RCP4.5 MID-CENTURY (2046-2065)

Legend

![Legend Image]

15.1. WATER AVAILABLE FOR DRINKING – 15.1.3. MID-CENTURY RCP 4.5 – 15.1.3.2. POTENTIAL IMPACT

FIGURE 385

PEOPLE: WATER AVAILABLE FOR DRINKING
POTENTIAL IMPACT: RCP4.5 MID-CENTURY (2046-2065)

Legend

![Legend Image]
15.1. WATER AVAILABLE FOR DRINKING – 15.1.3. MID-CENTURY RCP 4.5 – 15.1.3.3. VULNERABILITY
15.1. WATER AVAILABLE FOR DRINKING – 15.1.4. MID-CENTURY RCP 8.5 – 15.1.4.1. EXPOSURE

FIGURE 387

15.1. WATER AVAILABLE FOR DRINKING – 15.1.4. MID-CENTURY RCP 8.5 – 15.1.4.2. POTENTIAL IMPACT

FIGURE 388
15.1. WATER AVAILABLE FOR DRINKING – 15.1.4. MID-CENTURY RCP 8.5 – 15.1.4.3. VULNERABILITY
15.1. WATER AVAILABLE FOR DRINKING – 15.1.5. END-CENTURY RCP 4.5 – 15.1.5.1. EXPOSURE

FIGURE 390

15.1. WATER AVAILABLE FOR DRINKING – 15.1.5. END-CENTURY RCP 4.5 – 15.1.5.2. POTENTIAL IMPACT

FIGURE 391
15.1. WATER AVAILABLE FOR DRINKING – 15.1.5. END-CENTURY RCP 4.5 – 15.1.5.3. VULNERABILITY
15.1. WATER AVAILABLE FOR DRINKING – 15.1.6. END-CENTURY RCP 8.5 – 15.1.6.1. EXPOSURE

FIGURE 393

15.1. WATER AVAILABLE FOR DRINKING – 15.1.6. END-CENTURY RCP 8.5 – 15.1.6.2. POTENTIAL IMPACT

FIGURE 394
15.1. WATER AVAILABLE FOR DRINKING – 15.1.6. END-CENTURY RCP 8.5 – 15.1.6.3. VULNERABILITY
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – IMPACT CHAIN

EXPOSURE (0.50)

- RCM
 - Change in temperature (0.34)

EXTREME EVENTS INDICES

- Change in number of hot days (0.33)
- Change in number of very hot days (0.33)

SENSITIVITY (0.50)

- POPULATION (0.50)
 - Population density (0.50)
 - Share of agriculture labor force in total labor force (0.38)
 - Share of children and elderly of the population (0.29)
 - Water consumption per capita (0.12)
 - Refugee population (0.11)
 - Migrant population (0.11)

- NATURAL (0.25)
 - Change in forest cover (1.0)

- MANMADE (0.25)
 - Urban extent (1.0)

ADAPTIVE CAPACITY (0.50)

- KNOWLEDGE & AWARENESS (0.10)
 - E-Government development (0.38)
 - Tertiary enrolment (0.32)
 - Adult literacy rate (0.30)

- TECHNOLOGY (0.10)
 - Number of scientific and technical journal articles (0.41)
 - Information and communication technologies index (0.59)

- INSTITUTIONS (0.10)
 - Governance index (0.54)
 - Disaster risk reduction committees (0.46)

- INFRASTRUCTURE (0.50)
 - WATER & SANITATION (0.13)
 - Areas served by dams (0.17)
 - Installed desalination capacity per capita (0.17)
 - Fossil groundwater (0.17)
 - Access to improved water (0.17)
 - Access to improved sanitation (0.16)
 - Area equipped for irrigation (0.16)
 - ENVIRONMENT (0.12)
 - Environment performance index (1.0)

- ECONOMIC RESOURCES (0.11)
 - GDP per capita (0.37)
 - Age dependency ratio (0.31)
 - ODA (0.32)

- EQUITY (0.09)
 - Female-to-male unemployment rate (0.20)
 - Female-to-male literacy ratio (0.24)
 - Years lost due to disability (0.24)
 - Migrants/refugees index (0.32)

VULNERABILITY ASSESSMENT

CHANGE IN HEALTH CONDITIONS DUE TO HEAT STRESS – IMPACT CHAIN

- Technology (0.10)
- Number of scientific and technical journal articles (0.41)
- Information and communication technologies index (0.59)
- Populations (0.50)
- Population density (0.50)
- Share of agriculture labor force in total labor force (0.38)
- Share of children and elderly of the population (0.29)
- Water consumption per capita (0.12)
- Refugee population (0.11)
- Migrant population (0.11)
- Natural (0.25)
- Change in forest cover (1.0)
- Manmade (0.25)
- Urban extent (1.0)

POTENTIAL IMPACT (0.50)

15.2.1. IMPACT CHAIN

- Change in temperature (0.34)
- Change in number of hot days (0.33)
- Change in number of very hot days (0.33)
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.2. REFERENCE PERIOD – 15.2.2.1. EXPOSURE

FIGURE 397

15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.2. REFERENCE PERIOD – 15.2.2.2. SENSITIVITY

FIGURE 398
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.2. REFERENCE PERIOD – 15.2.2.3. POTENTIAL IMPACT

FIGURE 399

15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.2. REFERENCE PERIOD – 15.2.2.4. ADAPTIVE CAPACITY

FIGURE 400
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.2. REFERENCE PERIOD – 15.2.2.5. VULNERABILITY
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.3. MID-CENTURY RCP 4.5 – 15.2.3.1. EXPOSURE

FIGURE 402

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
EXPOSURE: RCP4.5 MID-CENTURY (2046-2055)

Legend
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.3. MID-CENTURY RCP 4.5 – 15.2.3.2. POTENTIAL IMPACT

FIGURE 403

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
POTENTIAL IMPACT: RCP4.5 MID-CENTURY (2046-2055)

Legend
- Lakes
- Reservoirs
- Rivers
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.3. MID-CENTURY RCP 4.5 – 15.2.3.3. VULNERABILITY
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.4. MID-CENTURY RCP 8.5 – 15.2.4.1. EXPOSURE

FIGURE 405

15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.4. MID-CENTURY RCP 8.5 – 15.2.4.2. POTENTIAL IMPACT

FIGURE 406
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.4. MID-CENTURY RCP 8.5 – 15.2.4.3. VULNERABILITY
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.5. END-CENTURY RCP 4.5

15.2.5.1. EXPOSURE

FIGURE 408

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
EXPOSURE: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Major cities
- Area not relevant to subsector

Low Exposure
High Exposure

15.2.5.2. POTENTIAL IMPACT

FIGURE 409

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
POTENTIAL IMPACT: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Major cities
- Area not relevant to subsector

Low Potential Impact
High Potential Impact
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.5. END-CENTURY RCP 4.5 – 15.2.5.3. VULNERABILITY

FIGURE 410

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
VULNERABILITY: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability
High Vulnerability
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.6. END-CENTURY RCP 8.5 – 15.2.6.1. EXPOSURE

FIGURE 411

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
EXPOSURE: RCP8.5 END-CENTURY (2081-2100)

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.6. END-CENTURY RCP 8.5 – 15.2.6.2. POTENTIAL IMPACT

FIGURE 412

PEOPLE: HEALTH CONDITIONS DUE TO HEAT STRESS
POTENTIAL IMPACT: RCP8.5 END-CENTURY (2081-2100)

Legend

- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Potential Impact
- High Potential Impact
15.2. HEALTH CONDITIONS DUE TO HEAT STRESS – 15.2.6. END-CENTURY RCP 8.5 – 15.2.6.3. VULNERABILITY

FIGURE 413
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.1. IMPACT CHAIN

- **Population density (0.10)**
 - Share of agricultural labor force in total labor force (0.06)
 - Share of agriculture in GDP (0.05)
 - Refuge population (0.06)
 - Migrant population (0.06)

- **Economic resources (0.11)**
 - GDP per capita (0.36)
 - ODA (0.29)
 - Food imports as % of merchandise exports (0.35)

- **Knowledge & awareness (0.10)**
 - E-Government development (0.34)
 - Tertiary enrollment (0.33)
 - Adult literacy rate (0.33)

- **Water & sanitation (0.50)**
 - Areas served by dams (0.17)
 - Installed desalination capacity per capita (0.17)
 - Fossil groundwater (0.17)
 - Access to improved water (0.17)
 - Access to improved sanitation (0.16)
 - Area equipped for irrigation (0.16)

- **Environment (0.16)**
 - Environment performance index (1.0)

- **Energy (0.16)**
 - Access to electricity (0.50)
 - Energy consumption (0.50)

- **Transport (0.16)**
 - Density of road network (1.0)

- **Adaptive capacity (0.50)**
 - Irrigated crop area (0.17)

- **Vulnerability assessment**

Sensitivity (0.50)

- **Technology (0.10)**
 - Number of scientific and technical journal articles (0.42)
 - Information and communication technologies index (0.58)

- **Economy (0.11)**
 - GDP per capita (0.36)
 - ODA (0.29)
 - Food imports as % of merchandise exports (0.35)

- **Equity (0.08)**
 - Female-to-male unemployment rate (0.32)
 - Female-to-male literacy ratio (0.31)
 - Migrants/refugees index (0.37)

Potential impact (0.50)

- **Exposure (0.50)**
 - Change in evapotranspiration (0.17)

- **RIM**
 - Change in maximum length of dry spell (0.16)
 - Change in annual count of 10 mm precipitation days (0.16)
 - Change in annual count of 20 mm precipitation days (0.16)

- **RCM**
 - Change in temperature (0.17)
 - Change in precipitation (0.17)

Adaptation capacity (0.50)

- **Change in employment rate for the agricultural sector – 15.3.1. Impact Chain**

- **Change in evapotranspiration (0.17)**

- **Extreme events indices**
 - Change in maximum length of dry spell (0.16)
 - Change in annual count of 10 mm precipitation days (0.16)
 - Change in annual count of 20 mm precipitation days (0.16)
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.2. REFERENCE PERIOD – 15.3.2.1. EXPOSURE

FIGURE 415

![Map showing Employment Rate for the Agricultural Sector - Exposure](image)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Exposure
- High Exposure

15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.2. REFERENCE PERIOD – 15.3.2.2. SENSITIVITY

FIGURE 416

![Map showing Employment Rate for the Agricultural Sector - Sensitivity](image)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
- Low Sensitivity
- High Sensitivity
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.2. REFERENCE PERIOD – 15.3.2.3. POTENTIAL IMPACT

FIGURE 417

15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.2. REFERENCE PERIOD – 15.3.2.4. ADAPTIVE CAPACITY

FIGURE 418
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.2. REFERENCE PERIOD – 15.3.2.5. VULNERABILITY

FIGURE 419
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.3. MID-CENTURY RCP 4.5 – 15.3.3.1. EXPOSURE

FIGURE 420

PEOPLE: EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR
EXPOSURE: RCP4.5 MID-CENTURY (2046-2095)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

FIGURE 421

PEOPLE: EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR
POTENTIAL IMPACT: RCP4.5 MID-CENTURY (2046-2095)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.3. MID-CENTURY RCP 4.5 – 15.3.3.3. VULNERABILITY
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.4. MID-CENTURY RCP 8.5 – 15.3.4.1. EXPOSURE

FIGURE 423

15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.4. MID-CENTURY RCP 8.5 – 15.3.4.2. POTENTIAL IMPACT

FIGURE 424
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.4. MID-CENTURY RCP 8.5 – 15.3.4.3. VULNERABILITY
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.5. END-CENTURY RCP 4.5 – 15.3.5.1. EXPOSURE

FIGURE 426

15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.5. END-CENTURY RCP 4.5 – 15.3.5.2. POTENTIAL IMPACT

FIGURE 427
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.5. END-CENTURY RCP 4.5 – 15.3.5.3. VULNERABILITY

FIGURE 428

PEOPLE: EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR
VULNERABILITY: RCP4.5 END-CENTURY (2081-2100)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to subsector

Low Vulnerability
High Vulnerability

RICCAR
Regional Centre for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.6. END-CENTURY RCP 8.5 – 15.3.6.1. EXPOSURE

FIGURE 429

15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.6. END-CENTURY RCP 8.5 – 15.3.6.2. POTENTIAL IMPACT

FIGURE 430
15.3. EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR – 15.3.6. END-CENTURY RCP 8.5 – 15.3.6.3. VULNERABILITY

FIGURE 431

PEOPLE EMPLOYMENT RATE FOR THE AGRICULTURAL SECTOR
VULNERABILITY: RCP 8.5 END-CENTURY (2081-2100)

Legend

- Major cities
- Areas not relevant to subsector
- Rivers
- Intermittent rivers
- Lakes
- Reservoirs

Low Vulnerability
High Vulnerability
15.4. PEOPLE SECTOR: VULNERABILITY – 15.4.1. REFERENCE PERIOD

FIGURE 432
15.4. PEOPLE SECTOR: VULNERABILITY – 15.4.2. MID-CENTURY RCP 4.5

FIGURE 433
15.4. PEOPLE SECTOR: VULNERABILITY – 15.4.3. MID-CENTURY RCP 8.5

FIGURE 434

PEOPLE SECTOR
VULNERABILITY: RCP8.5 MID-CENTURY (2046-2065)

Legend
- Lakes
- Reservoirs
- Intermittent rivers
- Major cities
- Area not relevant to sector

Low Vulnerability
High Vulnerability
15.4. PEOPLE SECTOR: VULNERABILITY – RCP 4.5 END-CENTURY (2081-2100)
15.4. PEOPLE SECTOR: VULNERABILITY – END-CENTURY RCP 8.5